Cho n là số tự nhiên . Chứng minh : ( 7n + 10 ; 5n + 7 ) = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d=ƯCLN(7n+10;5n+7)
=>35n+50-35n-49 chia hếtcho d
=>1 chia hết cho d
=>d=1
=>PSTG
Giả sử 7n+10 và 5n+7 đều chia hết cho d
<=> 5(7n+10) và 7(5n+7) đều chia hết cho d
<=> 35n+50 và 35n+49 đều chia hết cho d
=> (35n+50) - (35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
<=> 1 chia hết cho d
=> d=1
Vậy \(\frac{7n+10}{5n+7}\)là phân số tối giản
a) Ta có: ( 3 n - 1 ) 2 - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).
Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) Ta có: 100 - ( 7 n + 3 ) 2 =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.
Gọi ƯCLN(7n+10;5n+7)=a
Ta có : 7n+10 chia hết cho a => 5(7n+10) chia hết cho a
=> 35n+50 chia hết cho a (1)
5n+7 chia hết cho a => 7(5n+7) chia hết cho a
=> 35n + 49 chia hết cho a (2)
Từ (1) và (2) suy ra (35n+50)-(35n+49) chia hết cho a
=> 1 chia hết cho a
=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau
tick ủng hộ nha
Gọi d là UCLN của 7n + 10 và 5n + 7
Ta có:
7n + 10 chia hết cho d => 35n + 50 chia hết cho d(nhân thêm 5)
5n + 7 chia hết cho d => 35n + 49 chia hết cho d ( nhân thêm 7)
=> 35n + 50 - ( 35n + 49) chia hết cho d
=> 1 chia hết cho d
Mà d lớn nhất nên d = 1
hay (7n + 10 , 5n + 7) = 1(dpcm)