cho A(0;6), B(2;5). Tìm trên (d): x-2y+2=0 điểm M sao cho
a) MA+MB có giá trị nhỏ nhất
b) I MA -MB I có giá trị lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+TH1: có 1 số < 0 là a, 2 số lớn hơn 0 là b,c
=> bc > 0 mà a < 0
=> abc < 0 (trái giả thiết) => không tồn tại trường hợp này.
+TH2: 2 số <0 là b,c ; 1 số lớn hơn 0 là a.
=> bc > 0; b+c < 0; a > 0
a+b+c > 0 => a > -(b+c) > 0 => a.(b+c) < -(b+c).(b+c) (nhân cả 2 vế với 1 số < 0 là (b+c) nên đổi chiều)
=> ab+bc+ca=a(b+c) + bc < -(b+c)2 + bc = -(b2+c2+bc) < 0 (do b2,c2,bc > 0) => trái giả thiết => không tồn tại trường hợp này.
+TH3: a,b,c < 0
=>abc < 0 => trái giả thiết => không tồn tại trường hợp này.
Vậy: a,b,c > 0
Vì abc>0 nên có ít nhất 1 số lớn hơn 0
Vai trò của a, b, c như nhua nên chọn a>0
TH1: b<0;c<0 \(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\\ \Rightarrow b^2+c^2+2bc< -ab-ac\\ bc+ab+ac< -b^2-c^2-bc=-\left(b^2+c^2+a^2\right)< 0\)(trái với giả thiết)
\(\Rightarrow\)TH2: b>0, c>0 thì a>0( luôn đúng)
Vậy a, b, c >0
a)\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a+b-2\sqrt{ab}\ge0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x
->Đpcm
2 phần kia mai tui lm nốt cho h đi ngủ
a. \(a+\frac{1}{a}\ge2\Leftrightarrow\frac{a^2+1}{a}\ge2\Leftrightarrow a^2+1\ge2a\Leftrightarrow a^2-2a+1\ge0\Leftrightarrow\left(a-1\right)^2\ge0\)(luôn đúng)
Vậy...
b, \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\Leftrightarrow\frac{a+b}{2}\ge\frac{a+b+2\sqrt{ab}}{4}\)
\(\Leftrightarrow2a+2b\ge a+b+2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
Vậy...
Cách khác
a)Áp dụng BĐT Cô si cho 2 số dương ta có đpcm: \(a+\frac{1}{a}\ge2\sqrt{a.\frac{1}{a}}=2\)
Đẳng thức xảy ra khi a = 1.
b) Áp dụng bđt Bunhiacopxki \(2\left(\sqrt{a}^2+\sqrt{b}^2\right)\ge\left(\sqrt{a}+b\right)^2\)
Suy ra \(\left(\sqrt{a}^2+\sqrt{b}^2\right)\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2}\). Thay vào và rút gọn ta có đpcm:
\(VT\ge\sqrt{\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}}=\left|\frac{\sqrt{a}+\sqrt{b}}{2}\right|=\frac{\sqrt{a}+\sqrt{b}}{2}=VP^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b
\(\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)=\left(\dfrac{1-a}{a}\right)\left(\dfrac{1-b}{b}\right)\left(\dfrac{1-c}{c}\right)\)
\(=\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)\left(\dfrac{a+b}{c}\right)\ge\dfrac{2\sqrt{bc}}{a}.\dfrac{2\sqrt{ac}}{b}.\dfrac{2\sqrt{ab}}{c}=8\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Áp dụng BĐT Cô -si cho 3 số dương:
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)
Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)
b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)
Giả sử a<b, ta đặt b=a+k(k>0)
Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)
Chứng minh tương tự với a>b
\(T=\left(x_A-2y_A+2\right)\left(x_B-2y_B+2\right)=60>0\)
=> A và B nằm cùng phía so với d
a)Lấy B' đối xứng với B qua d
=> d là trung trực của BB'
Có \(MA+MB=MA+MB'\)
Để MA+MB nn <=> MA+MB' nhỏ nhất <=> M;A;B' thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB'}\) cùng phương
\(BB'\left\{{}\begin{matrix}quaB\left(2;5\right)\\\perp d\Rightarrow vtcp\overrightarrow{n}\left(2;1\right)\end{matrix}\right.\)
\(\Rightarrow BB':2x+y-9=0\)
Gọi \(F=BB'\cap d\) \(\Rightarrow F\left(\dfrac{16}{5};\dfrac{13}{5}\right)\)
F là trung điểm của BB' \(\Rightarrow B'\left(\dfrac{22}{5};\dfrac{1}{5}\right)\)
\(M\in\left(d\right)\Rightarrow M\left(2t-2;t\right)\)
\(\Rightarrow\overrightarrow{AB'}\left(\dfrac{22}{5};-\dfrac{29}{5}\right)\);\(\overrightarrow{AM}\left(2t-2;t-6\right)\)
\(\overrightarrow{AM};\overrightarrow{AB'}\) cp <=> \(\dfrac{22}{5}\left(t-6\right)=-\dfrac{29}{5}\left(2t-2\right)\)
<=>\(t=\dfrac{19}{8}\)
Vậy \(M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)
b) Có \(MA-MB\le AB\)
\(\Leftrightarrow\left|MA-MB\right|\le AB\)
\(\left|MA-MB\right|\) lớn nhất <=> M;A;B thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB}\) cp
\(M\in\left(2t-2;t\right)\)
\(\Rightarrow\overrightarrow{AM}\left(2t-2;t-6\right)\); \(\overrightarrow{AB}\left(2;-1\right)\)
\(\overrightarrow{AM};\overrightarrow{AB}\) cp <=> \(-1\left(2t-2\right)=2\left(t-6\right)\)
\(\Leftrightarrow t=\dfrac{7}{2}\)
\(\Rightarrow\) \(M\left(5;\dfrac{7}{2}\right)\)