2x=3y=4z;4x-3y+2z=18 tìm x,y,z
mọi người giải giúp mik với nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: x=3y=2z
=>x/6=y/2=z/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot6-3\cdot2+4\cdot3}=\dfrac{48}{18}=\dfrac{8}{3}\)
=>x=48/3=16; y=16/3; z=8
2: 2x=3y=4z
=>x/6=y/4=z/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot6-3\cdot4+4\cdot3}=\dfrac{48}{12}=4\)
=>x=24; y=16; z=12
Biểu thức bạn viết không phân tích được thành nhân tử.
Có lẽ đề ntn sẽ đúng hơn:
$(2x+3y+4z)^2-2(2x+3y+4z)(-2y-4z)+(-4z-2y)^2$
$=[(2x+3y+4z)-(-2y-4z)]^2$
$=(2x+5y+8z)^2$
Đặt biểu thức ở vế trái là A.
Ta có: \(A+3=\frac{2x+3y+4z+2022}{1+2x}+\frac{2x+3y+4z+2022}{1+3y}+\frac{2x+3y+4z+2022}{1+4z}=\frac{4038}{1+2x}+\frac{4038}{1+3y}+\frac{4038}{1+4z}\ge4038.\frac{9}{3+2x+3y+4z}=4038.\frac{9}{2019}=18\)
Dấu "=" xảy ra khi và chỉ khi 2x = 3y = 4z = 672
\(x=3y=2z\)
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)
Rồi thế vào là ra thôi :
\(\frac{2x}{2}=6\Rightarrow x=..........\)
Rồi tương tự thôi
6)
\(x=3y=2z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)
\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)
7)
\(2x=3y=-2z\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)
\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10};4y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{10}=\dfrac{z}{8}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{4z}{32}=\dfrac{2x+3y-4z}{30+30-32}=\dfrac{56}{28}=2\\ \Rightarrow\left\{{}\begin{matrix}x=30\\y=20\\z=16\end{matrix}\right.\)
Đề bài sai/thiếu
Ví dụ: \(x=y=z=0\) thì \(2x^3=3y^3=4z^3\) nhưng \(\dfrac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=0\)
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y+4z}{1-1-2}=\frac{48}{-2}=-24\)
=> \(\hept{\begin{cases}2x=-24\\3y=-24\\-2z=-24\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=12\end{cases}}}\)
\(2c=3y=-2zz\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{2}=\frac{-4z}{2}\)
Áp dụng tính chất của tỉ số bằng nhau ta có :
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=12\end{cases}}\)
ta có:
\(2x=3y=4z\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\) (vì 2x=3y=4z nên khi cùng chia cho 1 số thì kq vẫn bằng nhau rồi rút gọn phân số thôi)
Áp dụng tình chật dãy tỉ số bằng nhau ta co:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\Rightarrow\frac{4x-3y+2z}{24-12+6}=\frac{18}{18}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{6}=1\Rightarrow x=6\\\frac{y}{4}=1\Rightarrow y=4\\\frac{z}{3}=1\Rightarrow z=3\end{cases}}\)
vậy x=6; y=4; z=3