Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta cs
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\)
T lại cs
\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{x}{10}=\frac{z}{8}\left(2\right)\)
Từ (1);(2) \(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{2x+3y-4z}{2.15+3.10-4.8}=\frac{56}{28}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=2\\\frac{y}{10}=2\\\frac{z}{8}=2\end{cases}\Rightarrow\hept{\begin{cases}x=30\\y=20\\z=16\end{cases}}}\)
\(2x=3y;4y=5z\) => \(8x=12y;12y=15z\)
=> \(\frac{8x}{120}=\frac{12y}{120}=\frac{15z}{120}\)=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)
=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{4z}{32}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x}{30}=\frac{3y}{30}=\frac{4z}{32}=\frac{2x+3y-4z}{30+30-32}=\frac{56}{28}\)
=> \(\frac{2x}{30}=2=>2x=60=>x=30\)
\(\frac{3y}{30}=2=>3y=60=>y=20\)
\(\frac{4z}{32}=2=>4z=64=>z=16\)
Theo đề bài, ta có:
4y=5z
=> z= \(\frac{4}{5}\)y
Ta có:
2x+ 3y- 4z = 56
3y+ 3y- 4.\(\frac{4}{5}\)y=56
6y- \(\frac{8}{5}\)y = 56
\(\frac{22}{5}\)y = 56
=> y= \(\frac{140}{11}\)
=> x=\(\frac{3y}{2}\)= \(\frac{3.\frac{140}{11}}{2}\) =\(\frac{210}{11}\)
z= \(\frac{4y}{5}\)= \(\frac{4.\frac{140}{11}}{5}\) =\(\frac{120}{11}\)
Vậy...
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
\(3x=4y;2y=5z\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{2}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15};\dfrac{y}{15}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{2x}{40}=\dfrac{3y}{45}=\dfrac{5z}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{40}=\dfrac{3y}{45}=\dfrac{5z}{30}\)
\(=\dfrac{2x+3y-5z}{40+45-30}=\dfrac{55}{55}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.20=20\\y=1.15=15\\z=1.6=6\end{matrix}\right.\)
Tương tự
Ta có :
\(2x+3y-5z=55\)
\(3x=4y;2y=5z\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{2}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{12}=\dfrac{z}{16}\)
\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{2x+3y-5z}{2.19+3.12-2.16}=\dfrac{55}{22}=\dfrac{5}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{45}{2}\\\dfrac{y}{12}=\dfrac{5}{2}\Leftrightarrow x=30\\\dfrac{z}{16}=\dfrac{5}{2}\Leftrightarrow z=40\end{matrix}\right.\)
Vậy ..............
GIÚP MÍNH VỚI MN ƠIIIIIIII!
\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10};4y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{10}=\dfrac{z}{8}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{4z}{32}=\dfrac{2x+3y-4z}{30+30-32}=\dfrac{56}{28}=2\\ \Rightarrow\left\{{}\begin{matrix}x=30\\y=20\\z=16\end{matrix}\right.\)