Trong không gian Oxyz, mặt phẳng đi qua M(1;2;3) và song song với mặt phẳng x-2y+3z-1=0 có phương trình là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Mặt phẳng (Oxy) có phương trình là: z = 0.
Mặt phẳng này có vecto pháp tuyến là: k → = (0; 0; 1)
Vì mặt phẳng (P) song song với mặt phẳng (Oxy)
nên mặt phẳng này nhận vecto n p → = k → = (0; 0; 1) làm vecto pháp tuyến.
Mặt khác (P) đi qua điểm M(1;-2;3) nên (P) có phương trình là:
1.(z - 3) = 0 ⇔ z - 3 = 0
Chọn C.
Mặt phẳng (P) song song với mặt phẳng (Q):2x - 3z + 1 = 0 nên mặt phẳng (P) có phương trình dạng: 2x - 3z + D = 0 (D ≠ 1).
Mặt phẳng (P) đi qua điểm M nên thay tọa độ điểm vào phương trình mặt phẳng (P) ta được:
2.0 - 3.3 + D = 0 ⇔ D = 9 (thỏa mãn D ≠ 1).
Vậy phương trình mặt phẳng (P) là: 2x - 3z + 9 = 0.
Chọn B
Mặt phẳng (P) song song với mặt phẳng (Q): 2x – 3z + 1 = 0 nên mặt phẳng (P) có phương trình dạng: .
Mặt phẳng (P) đi qua điểm M(0;1;3) nên thay tọa độ điểm vào phương trình mặt phẳng (P) Ta được: 2.0 -3.3 + D = 0 ⇔ D = 9 (thỏa mãn D ≠ 1).
Vậy phương trình mặt phẳng (P) là: 2x – 3z + 9 = 0.
Đáp án C
Phương pháp:
+) Phương trình đường thẳng đi điểm M ( x 0 ; y 0 ; z 0 ) và có VTPT n → = ( a ; b ; c ) có phương trình:
+) Hai vecto u → , v → cùng thuộc một mặt phẳng thì mặt phẳng đó có VTPT là: n → = u → , v →
Cách giải:
Mặt phẳng ( α ) chứa điểm M và trục Ox nên nhận n α → = O M → , u O x → là một VTPT.
Kết hợp với ( α ) đi qua điểm M(1;0;-1)
Phương trình mặt cầu ở đáp án (C) có tâm I ( 3;3;-3 ) và bán kính R = 3 nên R = x 1 = y 1 = z 1 .
Do đó (S) tiếp xúc với ba mặt phẳng tọa độ. Hơn nữa M thỏa mãn phương trình (S) nên M ∈ S
Đáp án C
Đáp án B
Đường thẳng (d) qua điểm M(1;1;2) và vuông góc (P) nên có một véc-tơ chỉ phương là: