Giúp mình vớiiii
Viết phương trình chính tắc của elip (E) có 2 tiêu điểm F1,F2 trên trục hoành biết (E) đi qua điểm A (4;3) và S\(\Delta\) AF1F2= \(3\sqrt{14}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\)(E)
Thay x=0 và y=-4 vào (E), ta được:
16/b^2=1
=>b=4
F2(3;0)
=>c=3
=>căn a^2-16=3
=>a^2-16=9
=>a=5
=>x^2/25+y^2/16=1
1: (E): x^2/a^2+y^2/b^2=1
Thay x=0 và y=3 vào (E), ta được:
3^2/b^2=1
=>b^2=9
=>b=3
F2(5;0)
=>c=5
=>\(\sqrt{a^2-9}=5\)
=>a^2-9=25
=>a^2=34
=>\(a=\sqrt{34}\)
=>x^2/34+y^2/9=1
2: Thay x=7 và y=0 vào (E), ta được:
7^2/a^2+0^2/b^2=0
=>a^2=49
=>a=7
Thay x=0 và y=3 vào (E), ta được:
0^2/a^2+3^2/b^2=1
=>b^2=9
=>b=3
=>(E): x^2/49+y^2/9=1
3: Thay x=0 và y=1 vào (E), ta được:
1/y^2=1
=>y=1
=>(E): x^2/a^2+y^2/1=1
Thay x=1 và y=căn 3/2 vào (E), ta được:
1^2/a^2+3/4=1
=>1/a^2=1/4
=>a^2=4
=>a=2
=>(E); x^2/4+y^2/1=1
F1(\(-\sqrt{3};0\)) => c=\(\sqrt{3}\)
có: \(b^2=a^2-c^2=a^2-3\)
pt elip di qua M:
\(\dfrac{3}{a^2}+\dfrac{1}{4b^2}=1\)
\(\Leftrightarrow\dfrac{3}{a^2}+\dfrac{1}{4a^2-12}=1\)
dat a^2=t (t>0)
\(\Leftrightarrow\dfrac{3}{t}+\dfrac{1}{4t-12}=1\\ \Leftrightarrow12t-36+t=4t^2-12t\)
\(\Leftrightarrow4t^2-25t+36=0\\ \Leftrightarrow\left[{}\begin{matrix}t=4\\t=\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a^2=4\\a^2=\dfrac{9}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}b^2=1\\b^2=-\dfrac{3}{4}\left(loai\right)\end{matrix}\right.\)
=>ptelip: \(\dfrac{x^2}{4}+\dfrac{y^2}{1}=1\)
F2(5;0)
=>c=5
(E): x^2/a^2+y^2/b^2=1
Thay x=0 và y=3 vào (E), ta được:
9/b^2=1
=>b=3
c^2=a^2-b^2
=>a^2=5^2+3^2=34
=>(E): x^2/34+y^2/9=1
\(2c=F_1F_2=\frac{2S}{3}=2\sqrt{14}\Rightarrow c=\sqrt{14}\)
Gọi phương trình elip có dạng:
\(\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{a^2-14}=1\)
Do (E) qua \(A\left(4;3\right)\) nên ta có:
\(\frac{16}{a^2}+\frac{9}{a^2-14}=1\Leftrightarrow a^2\left(a^2-14\right)=16\left(a^2-14\right)+9a^2\)
\(\Leftrightarrow a^4-39a^2+224=0\Rightarrow\left[{}\begin{matrix}a^2=7< c^2\left(l\right)\\a^2=32\end{matrix}\right.\)
Vậy pt elip: \(\frac{x^2}{32}+\frac{y^2}{18}=1\)
Diện tích tam giác \(AF_1F_2\) theo công thức bằng 1/2 \(F_1F_2\) nhân khoảng cách từ A xuống \(F_1F_2\) cũng chính là trục Ox
Mà khoảng cách từ \(A\left(x;y\right)\) bất kì xuống Ox chính là \(\left|y\right|\)
Nên ta có \(S_{AF_1F_2}=\frac{1}{2}F_1F_2.\left|y_A\right|=\frac{1}{2}F_1F_2.3\Rightarrow F_1F_2=\frac{2S}{3}\)