K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2021

Chia keo Euler

\(\left\{{}\begin{matrix}a+b+c=2019\\a,b,c\in N\left(a,b,c\ne0\right)\\a< b< c\end{matrix}\right.\)

Có \(C^2_{2019}\)  bộ a,b,c dương 

Th1: Xét các cặp nghiệm 3 số trùng nhau

a=b=c=673 => 1 bộ

Th2: Xét các cặp nghiệm 3 số có a=b và c khác a

=> 2a +c= 2019

=> c là số lẻ và 0<c<2019 nên có 1009 giá trị 

=> 3.1009=3027 (bộ)

\(\Rightarrow\dfrac{C^2_{2019}-3027-1}{3!}=...\left(bo\right)\)

 

12 tháng 1 2021

hình như là \(C^2_{2018}\) phải ko

20 tháng 10 2023

a) A ∪ B = (-∞; 15)

A ∩ B = [-2; 3)

b) Để A ⊂ B thì:

m - 1 > -2 và m + 4 ≤ 3

*) m - 1 > -2

m > -2 + 1

m > -1

*) m + 4 ≤ 3

m ≤ 3 - 4

m ≤ -1

Vậy không tìm được m thỏa mãn đề bài

27 tháng 10 2023

a) A ∪ B = (-∞;15]

AB = [-2;3)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Phương trình: \({x^2} - 3x + 2 = 0\,\,\,\left( 1 \right)\)

Ta có: \(\Delta  = 9 - 4.2 = 1 > 0\)

Phương trình (1) có hai nghiệm \(\left\{ \begin{array}{l}{x_1} = \frac{{3 + 1}}{{2.1}} = 2\\{x_1} = \frac{{3 - 1}}{{2.1}} = 1\end{array} \right.\) => \({S_1} = \left\{ {1;2} \right\}\)

Phương trình: \(\left( {x - 1} \right)\left( {x - 2} \right) = 0\,\,\,\left( 2 \right)\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\) => \({S_2} = \left\{ {1;2} \right\}\)

b)     Hai tập \({S_1};{S_2}\) có bằng nhau

9 tháng 7 2017

1.A có 8 phần tử đó là các phần tử 0;1;2;3;4;5;6;7, 3 số \(\notin\)A là -1;-2;-3

17 tháng 9 2023

\(A=\left(-3;-1\right)\cup\left(1;2\right)\)

\(B=\left(-1;+\infty\right)\)

\(C=\left(-\infty;2m\right)\)

\(A\cap B=\left(-3;-1\right)\)

Để \(A\cap B\cap C\ne\varnothing\Leftrightarrow2m\ge-1\)

\(\Leftrightarrow m\ge-\dfrac{1}{2}\)

Vậy \(m\ge-\dfrac{1}{2}\) thỏa đề bài

21 tháng 4 2023

 Gọi T là biến cố "Trung bình cộng của các phần tử trong mỗi tập đều bằng 30." Biến cố này tương đương với biến cố "Tổng các phần tử trong mỗi tập đều bằng 60."

 Gọi A và B lần lượt là các biến cố "Tổng của các phần tử trong tập thứ nhất bằng 60." và "Tổng của các phần tử trong tập thứ hai bằng 60."

 Số các cặp \(\left(i,j\right)\) sao cho \(i\ne j;i,j\in A\) là \(C^2_{90}=4005\). Ta liệt kê các kết quả thuận lợi cho A:

 \(X=\left\{\left(1;59\right);\left(2;58\right);\left(3;57\right);...;\left(29;31\right)\right\}\) (có 29 phần tử). Vậy \(P\left(A\right)=\dfrac{29}{4005}\). Khi đó \(P\left(B\right)=\dfrac{28}{4004}=\dfrac{1}{143}\). Do đó \(P\left(T\right)=P\left(AB\right)=P\left(A\right).P\left(B\right)=\dfrac{29}{4005}.\dfrac{1}{143}=\dfrac{29}{572715}\).

 Vậy xác suất để trung bình cộng của các phần tử trong mỗi tập đều bằng 30 là \(\dfrac{29}{572715}\)

3 tháng 6 2018

\(\left\{1\right\};\left\{a\right\};\left\{b\right\};\left\{2\right\}\)

3 tháng 6 2018

Các tập hợp con của A là:

{1};{a}; {b}; {2}; {1;a}; {1;b}; {1;2}; {a;b}; {a;2}; {b;2}; {1;a;b}; {a;b;2}

20 tháng 11 2021

\(a,\)\(A=\left\{x\in R|x< 3\right\}\Rightarrow A=\left(\text{ -∞;3}\right)\)

\(B=\left\{-1;0;1;2;3;4;5\right\}\)

\(\Rightarrow A\cap B=\left\{-1;0;1;2\right\}\)

\(b,x=-1\Rightarrow y=1-2\left(-1\right)+m=m+3\) 

\(x=1\Rightarrow y=1-2+m=m-1\)

\(\Rightarrow C=(m-1;m+3]\subset A\)

\(\Rightarrow C\subset A\Leftrightarrow m+3< 3\Leftrightarrow m< 0\)

 

A={0;1/2}

Tập con có hai phần tử của A là {0;1/2}