K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 7 2020

Đặt \(log_2\left(\frac{8x-2^x-12m}{3}\right)=t\)

\(\Rightarrow8x-2^x-12m=3.2^t\)

Ta được hệ: \(\left\{{}\begin{matrix}3t-2^x-x=3m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12t-4.2^x-4x=12m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)

\(\Rightarrow12t-3.2^x-12x+3.2^t=0\)

\(\Leftrightarrow3.2^t+12t=3.2^x+12x\)

Hàm \(f\left(a\right)=3.2^a+12a\) đồng biến trên R nên đẳng thức xảy ra khi và chỉ khi \(x=t\)

\(\Rightarrow3x-2^x-x=3m\)

\(\Leftrightarrow2x-2^x=3m\)

Khảo sát hàm \(f\left(x\right)=2x-2^x\Rightarrow f'\left(x\right)=2-2^x.ln2=0\)

\(\Rightarrow2^x=\frac{2}{ln2}\Rightarrow x=log_2\left(\frac{2}{ln2}\right)=1-log_2\left(ln2\right)\)

Từ BBT ta thấy để pt có đúng 2 nghiệm thực pb

\(\Leftrightarrow3m< f\left(1-log_2\left(ln2\right)\right)\Rightarrow m\le0\) do m nguyên

Có 20 giá trị nguyên của m

6 tháng 7 2019

Đáp án là A

5 tháng 5 2018

Để hàm số nghịch biến trên khoảng (0;2) thì

Mà m ∈ ℤ

⇒ m ∈ - 4 ; 0 ; 1 ; 2 ; 3 ; 4 : có 6 giá trị

Chọn: B

19 tháng 12 2019

Để hàm số nghịch biến trên khoảng (0;2) thì

Mà m ∈ ℤ

⇒ m ∈ - 4 ; 0 ; 1 ; 2 ; 3 ; 4 : có 6 giá trị

Chọn: B

22 tháng 3 2021

b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)

\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)

19 tháng 1 2019

Chọn đáp án A.

10 tháng 2 2018

9 tháng 11 2019

Đáp án D

Nhắc lại quy tắc vẽ đồ thị hàm số  y = f x    từ đồ thị hàm số   y = f x

-         Phần 1: Giữ nguyên phần đồ thị hàm số  y = f x   bên phải trục Oy (bỏ phần bên trái)

-         Phần 2: Lấy đối xứng phần đồ thị hàm số  y = f x   bên phải trục O qua trục  O

-         Hợp của 2 phần, ta được đồ thị hàm số y = f x

Xét  y = f x = 1 3 x 3 − 2 x 2 + m − 1 x + 3 với   f x = 1 3 x 3 − 2 x 2 + m − 1 x + 3

Để hàm số y = f x  có 5 điểm cực trị   ⇔ y = f x có 2 điểm cực trị nằm phía bên phải trục  Oy  ⇔ f ' x = 0  có 2 nghiệm dương phân biệt  ⇔ x 2 − 4 x + m − 1 = 0    có 2 nghiệm dương phân biệt x 1 ,   x 2

  ⇔ Δ > 0 x 1 + x 2 > 0 x 1 x 2 > 0 ⇔ 5 − m > 0 m − 1 > 0 ⇔ 1 < m < 5 . Kết hợp   m ∈ ℤ → m = 2 ; 3 ; 4

18 tháng 1 2017

⇔ x − 1 ≥ 0 2 x + m = x − 1 2 ⇔ x ≥ 1 x 2 − 4 x + 1 − m = 0     ( * )

Phương trình có nghiệm duy nhất khi hệ có nghiệm duy nhất.

TH1:  ∆ ' = 0 ⇔ m = - 3 thì (*) có nghiệm kép  x = 2 ≥ 1 (thỏa).

TH2:  ∆ ' > 0 ⇔ m > - 3 thì phương trình có nghiệm duy nhất khi (*) có 2 nghiệm thỏa mãn:

x 1 < 1 < x 2 ⇔ x 1 - 1 x 2 - 1 < 0 ⇔ x 1 x 2 - x 1 + x 2 + < 0

⇔ 1 - m - 4 + < 0 ⇔ m > - 2

Do m không dương nên m {−1; 0}

Kết hợp với trường hợp m = −3 ở trên ta được 3 giá trị của m thỏa mãn bài toán.

Đáp án cần chọn là: B

1 tháng 2 2017

Đáp án D

Ta có  y ' = 3 m + 1 x 2 + 2 m + 1 x − 2

Để hàm số y = m + 1 x 3 + m + 1 x 2 − 2 x + 2 nghịch biến trên ℝ thì y ' ≤ 0  với   ∀ x ∈ ℝ

Suy ra 3 m + 1 x 2 + 2 m + 1 x − 2 ≤ 0  với  ∀ x ∈ ℝ , ⇒ a = 0 b x + c ≤ 0 a ≠ 0 a < 0 Δ ' ≤ 0

m = − 1 − 2 ≤ 0 l / d m < − 1 m 2 + 8 m + 7 ≤ 0 ⇔ m = − 1 m ∈ − 7 ; − 1 .   Theo đầu bài: m ∈ ℤ ⇒ m = − 7 ; − 6 ; − 5 ; − 4 ; − 3 ; − 2 ; − 1