K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 7 2020

Đặt \(log_2\left(\frac{8x-2^x-12m}{3}\right)=t\)

\(\Rightarrow8x-2^x-12m=3.2^t\)

Ta được hệ: \(\left\{{}\begin{matrix}3t-2^x-x=3m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12t-4.2^x-4x=12m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)

\(\Rightarrow12t-3.2^x-12x+3.2^t=0\)

\(\Leftrightarrow3.2^t+12t=3.2^x+12x\)

Hàm \(f\left(a\right)=3.2^a+12a\) đồng biến trên R nên đẳng thức xảy ra khi và chỉ khi \(x=t\)

\(\Rightarrow3x-2^x-x=3m\)

\(\Leftrightarrow2x-2^x=3m\)

Khảo sát hàm \(f\left(x\right)=2x-2^x\Rightarrow f'\left(x\right)=2-2^x.ln2=0\)

\(\Rightarrow2^x=\frac{2}{ln2}\Rightarrow x=log_2\left(\frac{2}{ln2}\right)=1-log_2\left(ln2\right)\)

Từ BBT ta thấy để pt có đúng 2 nghiệm thực pb

\(\Leftrightarrow3m< f\left(1-log_2\left(ln2\right)\right)\Rightarrow m\le0\) do m nguyên

Có 20 giá trị nguyên của m

NV
25 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))

Xét (1):

\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)

\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm

 Để pt đã cho có đúng 2 nghiệm phân biệt  ta có các TH sau:

TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)

TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định

(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)

Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)

\(\Rightarrow2< log_5m< \sqrt[3]{10}\)

\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)

\(\Rightarrow\) \(32-26+1\) giá trị nguyên

3 tháng 5 2019

25 tháng 9 2018

12 tháng 10 2021

??

12 tháng 10 2021

?

6 tháng 11 2017

13 tháng 8 2017




18 tháng 5 2019

Chọn C.

NV
25 tháng 8 2021

\(\Rightarrow\left(x^2+2\right)^2=2x^4-4x^2+m\)

\(\Rightarrow m=-x^4+8x^2+4\)

BBT \(f\left(x\right)=-x^4+8x^2+4\Rightarrow4< m< 20\)

25 tháng 8 2021

Phương trình ⇒ (x2 + 2)2 = 2x4 - 4x2 + m

⇔ m = - x4 + 8x2 + 4 (1)

(1) là phương trình hoành độ giao điểm của đồ thị hàm số y = m và độ thị hàm số y = f(x) =  - x4 + 8x2 + 4.

Đạo hàm : \(y'\) = - 4x3 + 16x = x (16 - 4x2) = x (4 - 2x) (4 + 2x)

y' = 0 ⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\) 

y' > 0 ⇔ x ∈ \(\left(-\infty;-\dfrac{1}{2}\right)\cup\left(0;\dfrac{1}{2}\right)\) (Đồng biến)

y' < 0 ⇔ x ∈ \(\left(-\dfrac{1}{2};0\right)\cup\left(\dfrac{1}{2};+\infty\right)\) (nghịch biến)

(1) có 4 nghiệm phân biệt khi y = m cắt y = f(x) tại 4 điểm phân biệt

⇔ f(0) < m < f\(\left(\dfrac{1}{2}\right)\)

⇔ 4 < m < 20