Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\overrightarrow {AB} = \left( {4;1} \right),\overrightarrow {AC} = \left( {3;3} \right),\overrightarrow {BC} = \left( { - 1;2} \right)\)
+) Đường thẳng AB nhận vectơ \(\overrightarrow {AB} = \left( {4;1} \right)\)làm phương trình chỉ phương nên có vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {1; - 4} \right)\) và đi qua điểm \(A(1;1)\), suy ra ta có phương trình tổng quát của đường thẳng AB là:
\(\left( {x - 1} \right) - 4\left( {y - 1} \right) = 0 \Leftrightarrow x - 4y + 3 = 0\)
Độ dài đường cao kẻ từ C chính là khoảng cách từ điểm C đến đường thẳng AB
\(d\left( {C,AB} \right) = \frac{{\left| {4 - 4.4 + 3} \right|}}{{\sqrt {{1^2} + {4^2}} }} = \frac{{9\sqrt {17} }}{{17}}\)
+) Đường thẳng BC nhận vectơ \(\overrightarrow {BC} = \left( { - 1;2} \right)\)làm phương trình chỉ phương nên có vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {2;1} \right)\) và đi qua điểm \(B(5;2)\), suy ra ta có phương trình tổng quát của đường thẳng BC là:
\(2\left( {x - 5} \right) + \left( {y - 2} \right) = 0 \Leftrightarrow 2x + y - 12 = 0\)
Độ dài đường cao kẻ từ A chính là khoảng cách từ điểm A đến đường thẳng BC
\(d\left( {A,BC} \right) = \frac{{\left| {2.1 + 1 - 12} \right|}}{{\sqrt {{2^2} + {1^2}} }} = \frac{{9\sqrt 5 }}{5}\)
+) Đường thẳng AC nhận vectơ \(\overrightarrow {AC} = \left( {3;3} \right)\)làm phương trình chỉ phương nên có vectơ pháp tuyến là \(\overrightarrow {{n_3}} = \left( {1; - 1} \right)\) và đi qua điểm \(A(1;1)\), suy ra ta có phương trình tổng quát của đường thẳng AC là:
\(\left( {x - 1} \right) - \left( {y - 1} \right) = 0 \Leftrightarrow x - y = 0\)
Độ dài đường cao kẻ từ B chính là khoảng cách từ điểm B đến đường thẳng AC
\(d\left( {B,AC} \right) = \frac{{\left| {5 - 2} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{{3\sqrt 2 }}{2}\)
Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý
Gọi A ' x ; y . Ta có A A ' → = x − 4 ; y − 3 B C → = − 5 ; − 15 B A ' → = x − 2 ; y − 7 .
Từ giả thiết, ta có A A ' ⊥ B C B , A ' , C thang hang ⇔ A A ' → . B C → = 0 1 B A ' → = k B C → 2 .
1 ⇔ − 5 x − 4 − 15 y − 3 = 0 ⇔ x + 3 y = 13.
2 ⇔ x − 2 − 5 = y − 7 − 15 ⇔ 3 x − y = − 1.
Giải hệ x + 3 y = 13 3 x − y = − 1 ⇔ x = 1 y = 4 ⇒ A ' 1 ; 4 .
Chọn C.
Gọi A’ (x; y).
Ta có A A ' → = x − 4 ; y − 3 B C → = − 5 ; − 15 B A ' → = x − 2 ; y − 7 .
Từ giả thiết, ta có A A ' ⊥ B C B , A ' , C thang hang ⇔ A A ' → . B C → = 0 1 B A ' → = k B C → 2 .
1 ⇔ − 5 x − 4 − 15 y − 3 = 0 ⇔ x + 3 y = 13.
2 ⇔ x − 2 − 5 = y − 7 − 15 ⇔ 3 x − y = − 1.
Giải hệ x + 3 y = 13 3 x − y = − 1 ⇔ x = 1 y = 4 ⇒ A ' 1 ; 4 .
Chọn C
1, Gọi tọa độ điểm D(x;y)
Ta có:\(\overrightarrow{AB}\left(8;1\right)\)
\(\overrightarrow{DC}\left(1-x;5-y\right)\)
Tứ giác ABCD là hình bình hành khi
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow1-x=8;5-y=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)
Vậy tọa độ điểm D(-7;4)