Trong không gian Oxyz mặt phẳng đi qua ba điểm A (1;2;2), B (3;-3;-1), C (-1;0;2) và mặt phẳng (P): 2x + y - 2z - 1= 0 Xét là điểm thay đổi thuộc mặt phẳng (P) giá trị nhỏ nhất của | M A ⇀ + 2 M B ⇀ + 3 M C ⇀ bằng:
A. 8 3
B. 5 3
C. 10 3
D. 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Từ giả thiết ta suy ra
Từ đó suy ra n p → = (2; -5; -4) là một vectơ pháp tuyến của (P)
Đáp án A
Từ giả thiết ta suy ra:
Từ đó suy ra phương trình của mặt phẳng (P) là: 1(x - 1) - 1(y - 0) = 0 ⇔ x - y - 1 = 0
Đáp án A
Từ giả thiết ta suy ra
Mặt khác (P) đi qua điểm A(1 ;0 ;1) nên ta có phương trình của mặt phẳng (P) là : 1(x - 1) - 1(y - 0) = 0 <=> x - y - 1 = 0.
Vậy đáp án đúng là A.
Chọn D.
Ta có:
Gọi n → là một vectơ pháp tuyến của mặt phẳng (ABC) ta có
ta được phương trình mặt phẳng (ABC) là:
Phương trình mặt cầu ở đáp án (C) có tâm I ( 3;3;-3 ) và bán kính R = 3 nên R = x 1 = y 1 = z 1 .
Do đó (S) tiếp xúc với ba mặt phẳng tọa độ. Hơn nữa M thỏa mãn phương trình (S) nên M ∈ S
Đáp án C
Đáp án A
Mặt phẳng cần tìm vuông góc với BC nên nhận làm véc-tơ pháp tuyến.
Mặt phẳng đi qua A, nhận (1;-4;2) làm véctơ pháp tuyến có phương trình là x - 4y + 2z + 4 = 0.