Cho a,b,c thuộc [0;1].CMR:
\(a+b^2+c^3-ab-bc-ac\) <= 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài sai, tui cho VD nè: a = 3; b = 4. Hoàn toàn thỏa mãn giả thiết nhưng ko đúng với đfcm.
a(b-c)+b(c-a)+c(a-b)=ab-ac+bc-ab+ac-bc=(ab-ab)+(ac-ac)+(bc-bc)=0+0+0=0
=> đpcm
a,b\(\in\) Z, b\(\ne\) 0
Có phân số \(\frac{a}{b}=\frac{a.m}{a.n}\),m,n\(\in\) Z; m,n\(\ne\)0;m\(\ne\)n là \(\frac{0}{b}=\frac{0.m}{b.m};b\in Z,b\ne0\)
Bạn hk tốt nha
Có :
( 1 - a ) ( 1 - b ) ( 1 - c ) ≥ 0 ( do a,b,c thuộc [0;1] )
\(\Leftrightarrow\)1 - a - b - c +ab + bc + ca- abc ≥ 0
\(\Leftrightarrow\) a + b + c - ab - bc -ca \(\le\) 1 - abc
Do a,b,c thuộc [0;1] nên b2\(\le\)b; c3 \(\le\)c và abc \(\le\) 1
Suy ra 1\(\ge\)1 - abc \(\ge\) a + b + c -ab - bc - ca \(\ge\)a + b2 + c3 -ab - bc - ca
Dấu bằng xảy ra khi 2 số bằng 0, 1 số bằng 1. ( tự thay )