Cho a,b,c thuộc [0;1].CMR:
\(a+b^2+c^3-ab-bc-ac\) <= 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài sai, tui cho VD nè: a = 3; b = 4. Hoàn toàn thỏa mãn giả thiết nhưng ko đúng với đfcm.
a(b-c)+b(c-a)+c(a-b)=ab-ac+bc-ab+ac-bc=(ab-ab)+(ac-ac)+(bc-bc)=0+0+0=0
=> đpcm
a,b\(\in\) Z, b\(\ne\) 0
Có phân số \(\frac{a}{b}=\frac{a.m}{a.n}\),m,n\(\in\) Z; m,n\(\ne\)0;m\(\ne\)n là \(\frac{0}{b}=\frac{0.m}{b.m};b\in Z,b\ne0\)
Bạn hk tốt nha
Vì a, b, c thuộc đoạn (0,1) nên 1- a, 1 - b, 1 - c \(\ge\)0.
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Rightarrow1-a-b-c+ab+bc+ca-abc\ge0\)
\(\Rightarrow a+b+c-ab-bc-ca\le1-abc\le1\left(đpcm\right)\)
Dấu bằng xảy ra khi có 1 số bằng 1, 2 số còn lại bằng 0
À thêm nx b<b^2, c<c^3 vì thuộc (0,1). Thay vào kết quả trên ta có đpcm