K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

Gọi M là trung điểm của BC

=>BM=CM=3

\(AM=\sqrt{6^2-3^2}=3\sqrt{3}\)

\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\cdot AM=6\sqrt{3}\)

Câu 2: 

b: \(\overrightarrow{AC}-\overrightarrow{AD}=\overrightarrow{DA}+\overrightarrow{AC}=\overrightarrow{DC}\)

=>|vecto AC-vecto AD|=DC=3a

a: \(\left|\overrightarrow{AB}-\overrightarrow{BC}\right|=2\cdot CM=5\sqrt{3}\)

b: \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=5\sqrt{3}\)

15 tháng 3 2016

Theo bất đẳng thức của tam giác ABC ta có : AB < AC+BC = AC < 1cm + 9cm => AB < 10cm (1)

Theo hệ quả bất đẳng thức tam giác ABC ta có: AB > BC-AC= AB > 9cm-1cm => AB > 8cm (2)

Từ (1) và (2) ta => 8cm< AB < 10cm => AB = 9cm

Chu vi tam giác ABC: AB+AC+BC = 9cm+9cm+1cm = 19cm                                                     

15 tháng 3 2016

AB= 8

Chu vi tam giác ABC là :18(cm)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Dựng hình bình hành ABDC.

Áp dụng quy tắc hình bình hành vào ABDC ta có:

\(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD}  \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD\)

Gọi O là giao điểm của AD và BC, ta có:

\(AO = \sqrt {A{B^2} - B{O^2}}  = \sqrt {A{B^2} - {{\left( {\frac{1}{2}BC} \right)}^2}}  = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{a\sqrt 3 }}{2}\)

\(AD = 2AO = a\sqrt 3  \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = a\sqrt 3 \)

Vậy độ dài vectơ \(\overrightarrow {AB}  + \overrightarrow {AC} \) là \(a\sqrt 3 \)

14 tháng 9 2021

2AB+3AC=5BC

=> =5a

ΔABC đều có BM là đường trung tuyến

nên BM là phân giác của góc ABC và BM\(\perp\)AC

BM là phân giác của góc ABC

=>\(\widehat{ABM}=\widehat{CBM}=\dfrac{\widehat{ABC}}{2}=30^0\)

M là trung điểm của AC

=>\(AM=MC=\dfrac{AC}{2}=\dfrac{a}{2}\)

ΔAMB vuông tại M

=>\(AM^2+BM^2=AB^2\)

=>\(BM^2=AB^2-AM^2=a^2-\left(0,5a\right)^2=0,75a^2\)

=>\(BM=\dfrac{a\sqrt{3}}{2}\)

Gọi K là trung điểm của AM

=>\(KA=KM=\dfrac{AM}{2}=0,25a\)

ΔBMK vuông tại M

=>\(BM^2+MK^2=BK^2\)

=>\(BK^2=\left(0,25a\right)^2+\left(\dfrac{a\sqrt{3}}{2}\right)^2=\dfrac{13}{16}a^2\)

=>\(BK=\dfrac{a\sqrt{13}}{4}\)

Xét ΔBAM có BK là đường trung tuyến

nên \(\overrightarrow{BA}+\overrightarrow{BM}=2\cdot\overrightarrow{BK}\)

=>\(\left|\overrightarrow{BA}+\overrightarrow{BM}\right|=2\cdot BK=2\cdot\dfrac{a\sqrt{13}}{4}=\dfrac{a\sqrt{13}}{2}\)

28 tháng 3 2017

Giải bài 5 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Ta có:

Giải bài 5 trang 12 sgk Hình học 10 | Để học tốt Toán 10

(Quy tắc hình bình hành)

(Trong đó D là đỉnh còn lại của hình bình hành ABCD)

Giải bài 5 trang 12 sgk Hình học 10 | Để học tốt Toán 10

+ Tính BD:

Hình bình hành ABCD có AB = BC = a nên ABCD là hình thoi.

⇒ AC ⊥ BD tại O là trung điểm của AC và BD.

Giải bài 5 trang 12 sgk Hình học 10 | Để học tốt Toán 10

ΔABC đều có AH là đường cao

nên \(AH=\dfrac{AB\cdot\sqrt{3}}{2}=\dfrac{2a\cdot\sqrt{3}}{2}=a\sqrt{3}\)

=>\(\left|\overrightarrow{AH}\right|=AH=a\sqrt{3}\)

17 tháng 9 2023

Xét tam giác ABC đều có đường cao AH ta có: 

\(\Rightarrow BH=HC=\dfrac{BC}{2}=\dfrac{2a}{2}=a\) 

Mà: \(AH=\sqrt{AB^2-BH^2}=\sqrt{\left(2a\right)^2-a^2}\)

\(\Rightarrow AH=\sqrt{4a^2-a^2}=a\sqrt{3}\)

\(\Rightarrow\left|\overrightarrow{AH}\right|=AH=a\sqrt{3}\)