Cho tam giác ABC biết A(3;1) và 2 đường trung tuyến có phương trình là (d1): 5x-3y-1=0, (d2): y-3=0. Phương trình cạnh BC là?
Giúp mình với nha. Cảm ơn ạ!!~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
bài 1 theo bài ra có tam giác abc=def
a=27do f=52do
mà a=d
=>a=d=27do
=> d=27 do
f=c=52do
=>c =52do
goc b=e
ma ta co a+b+c=d+e+f=180do
thay số 27+b+52=27+e+52=180
=>b=180-(27+52)=101
=>b=e=101
Gọi \(C\left(x;y\right)\) và G là trọng tâm tam giác
\(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x+5}{3}\\y_G=\dfrac{y-5}{3}\end{matrix}\right.\) \(\Rightarrow3\left(\dfrac{x+5}{3}\right)-\dfrac{y-5}{3}-8=0\)
\(\Leftrightarrow3x-y-4=0\) \(\Rightarrow y=3x-4\Rightarrow C\left(x;3x-4\right)\)
\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)
\(\Leftrightarrow\dfrac{3}{2}=\dfrac{1}{2}\left|5\left(3x-1\right)-\left(x-2\right)\right|\)
\(\Leftrightarrow x=...\)
1:
BC=15+20=35cm
AD là phân gíac
=>AB/BD=AC/CD
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=35^2
=>k=7
=>AB=21cm; AC=28cm
AH=21*28/35=16,8cm
\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)
2:
BC=căn 12^2+16^2=20cm
HB=AB^2/BC=12^2/20=7,2cm
HC=20-7,2=12,8cm
Hai đường trung tuyến đã cho đều không phải là đường trung tuyến xuất phát từ A vì tọa độ của A không thỏa mãn các phương trình của chúng.
Đặt BM : 5x-3y-1=0 ; CN: y-3=0 là 2 trung tuyến của tam giác ABC.
Gọi M,N là trung tuyến xuất phát từ đỉnh B và C. Đặt B(x;y) => N((x-3)/2);((y-1)/2)) và B thuộc BM; C thuộc CN.<=> 5x-3y=0 và (y-1)/2-3=0 <=> x=21/5 và y=7 => B(21/5;7)
Tương tự => C(11/5;3)
=> BC(-2;-4) => n(4;-2). Vậy phương trình đường thẳng chứa cạnh BC là 4x-2y-54/5=0<=>10x-5y-27=0
Xét lại đáp án giúp mình với. Tại thấy hơi lẻ :)))
Một trong các đáp án:
A. 7x - y = 0
B. 10x + 17y - 53 = 0
C. x + 7y - 2 = 0
D. -10x + 17y - 53 = 0