Cho hình thang ABCD có AD // BC và AD=2BC ,B(4;0) phương trình đường chéo AC là 2x-y-3=0 trung điểm E của AD thuộc đường thẳng d:x-2y+10=0.Tìm tọa độ các đỉnh còn lại của hình thang biết cot ADC bằng 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) Do BC//AD và AD\(\subset\) (SAD)
=> BC// (SAD)
b) có \(\dfrac{DE}{AE}=\dfrac{DN}{NS}=2\)
=> NE//SA
do BC//AD => \(\dfrac{BC}{AD}=\dfrac{OB}{OD}=\dfrac{1}{2}\) => \(\dfrac{DE}{AE}=\dfrac{OD}{OB}=2\) => OE//AB
Do NE//SA và OE//AB mà OE,NE \(\subset\)(ONE); SA,SB\(\subset\) (SAB)
=> (ONE) //(SAB)
Đáp án C
Ta có V D . S S ' C = V D . S C B = V S . B C D
Mặt khác S B C D = 1 2 S A B D = 1 3 S A B C D
Do đó V D . S S ' C = V D . S C B = V S . B C D = 1 3 V S . A B C D
Khi đó V S S ' A B C D V S . A B C D = 1 3 + 1 1 = 4 3
Vẫn dùng kĩ thuật cũ:
\(\overrightarrow{AD}-2\overrightarrow{BC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AS}+\overrightarrow{SD}-2\overrightarrow{BS}-2\overrightarrow{SC}=0\)
\(\Leftrightarrow\overrightarrow{SA}=2\overrightarrow{SB}-2\overrightarrow{SC}+\overrightarrow{SD}\) (1)
Đặt \(\overrightarrow{SC}=x.\overrightarrow{SN}\)
Giả thiết suy ra \(\overrightarrow{SD}=3\overrightarrow{SM}\)
Thế vào (1): \(\overrightarrow{SA}=2\overrightarrow{SB}-2x.\overrightarrow{SN}+3\overrightarrow{SM}\)
Do A, B, N, M đồng phẳng
\(\Rightarrow2-2x+3=1\)
\(\Rightarrow x=2\Rightarrow SC=2SN\Rightarrow SN=\dfrac{1}{2}SC\)
Ta có A E = B C A E / / B C suy ra AECB là hình bình hành. Do A B C ^ = 90 0 nên AECB là hình chữ nhật.
Suy ra C E ⊥ A D mà S A ⊥ C E ⇒ C E ⊥ S A D ⇒ C E ⊥ S D .
Ta lại có E K ⊥ S D ⇒ S D ⊥ E K M ⇒ S D ⊥ C K .
Suy ra góc giữa hai mặt phẳng (SAD) và (SCD) là góc EKC
a: Xét (SAD) và (SBC) có
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC
b: Xét ΔSAB có
M,N lần lượt là trung điểm của AS,AB
=>MN là đường trung bình của ΔSAB
=>MN//SB
Ta có: MN//SB
SB\(\subset\)(SBC)
MN ko nằm trong mp(SBC)
Do đó: MN//(SBC)
Chọn đáp án A.
Gọi M là giao điểm của AB và CD. Từ B kẻ đường thẳng song song với AC, cắt CM tại N.
Khi quay ABCD quanh trục CD ta được hai phần:
+ Tam giác ACD sinh ra khối nón với bán kính đáy