Giải hệ phương trình:x+2y=3;-2x-y=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x^3+1=2y,y^3+1=2x`
`=>x^3-y^3=2y-2x`
`<=>(x-y)(x^2+xy+y^2)+2(x-y)=0`
`<=>(x-y)(x^2+xy+y^2+2)=0`
Vì `x^2+xy+y^2+2>=2>0`
`=>x-y=0<=>x=y` thay vào bthức
`=>x^3+1=2x`
`<=>x^3-2x+1=0`
`<=>x^3-x^2+x^2-2x+1=0`
`<=>x^2(x-1)+(x-1)^2=0`
`<=>(x-1)(x^2+x-1)=0`
`+)x=1=>x=y=1`
`+)x^2+x-1=0`
`\Delta=1+4=5`
`=>x_1=(-1-sqrt5)/2,x_2=(-1+sqrt5)/2`
`=>x=y=(-1-sqrt5)/2,x=y=z(-1+sqrt5)/2`
Vậy `(x,y)=(1,1),((-1-sqrt5)/2,(-1-sqrt5)/2),((-1+sqrt5)/2,(-1+sqrt5)/2)`
\(\left\{{}\begin{matrix}x^2-xy-2y^2=0\\3x+y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x\left(1-3x\right)-2\left(1-3x\right)^2=0\\y=1-3x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-14x^2+11x-2=0\\y=1-3x\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{7}\end{matrix}\right.\\y=1-3x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=\dfrac{1}{7}\end{matrix}\right.\end{matrix}\right.\)
Vậy...
1: =>x^2+3x-4=0
=>(x+4)(x-1)=0
=>x=1 hoặc x=-4
2: =>2x-3y=1 và 3x=4y+2
=>2x-3y=1 và 3x-4y=2
=>x=2 và y=1
ĐKXĐ:\(x\ge-9\)
\(x-\sqrt{x+9}=3\\ \Leftrightarrow\sqrt{x+9}=x-3\left(x\ge3\right)\\ \Leftrightarrow x+9=x^2-6x+9\\ \Leftrightarrow x^2-7x=0\\ \Leftrightarrow x\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=7\left(tm\right)\end{matrix}\right.\)
Vậy x=7
\(\hept{\begin{cases}x+2y=3\\-2x-y=6\end{cases}< =>\hept{\begin{cases}x=3-2y\\-2\left(3-2y\right)-y\end{cases}< =>\hept{\begin{cases}x=3-2y\\-6+4y=6\end{cases}< =>\hept{\begin{cases}x=3-2y\\4y=12\end{cases}< =>\hept{\begin{cases}x=-3\\y=3\end{cases}}}}}}\)