Cặp \(\left(1;-2\right)\)có phải là một nghiệm phương trình \(3x-2y=7\)? Phương trình đó còn những nghiệm khác nữa không ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}2a - 1 = 3\\ - 3 = 4b + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\)
Vậy \(\left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\) thì \(\overrightarrow u = \overrightarrow v \)
b) \(\overrightarrow x = \overrightarrow y \Leftrightarrow \left\{ \begin{array}{l}a + b = 2a - 3\\ - 2a + 3b = 4b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\)
Vậy \(\left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\) thì \(\overrightarrow x = \overrightarrow y \)
\(\left( { - 1} \right) + \left( { - 3} \right) = - \left( {1 + 3} \right) = - 4\)
\(\left( { - 3} \right) + \left( { - 1} \right) = - \left( {3 + 1} \right) = - 4\)
\( \Rightarrow \left( { - 1} \right) + \left( { - 3} \right) = \left( { - 3} \right) + \left( { - 1} \right)\)
\(\left( { - 7} \right) + \left( { + 6} \right) = - \left( {7 - 6} \right) = - 1\)
\(\left( { + 6} \right) + \left( { - 7} \right) = - \left( {7 - 6} \right) = - 1\)
\( \Rightarrow \left( { - 7} \right) + \left( { + 6} \right) = \left( { + 6} \right) + \left( { - 7} \right)\)
(\(x-3\))2 + (2y - 1)2 = 0
(\(x\) - 3)2 ≥ 0 ∀ \(x\)
(2y - 1)2 ≥ 0 ∀ y
⇔ (\(x\) - 3)2 + (2y - 1)2= 0
⇔ \(\left\{{}\begin{matrix}x-3=0\\3y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{3}\end{matrix}\right.\)
(4\(x-3\))4 + (y + 2)2 ≤ 0
(4\(x\) - 3)4 ≥ 0 ∀ \(x\)
(y + 2)2 ≥ 0 ∀ y
⇔(4\(x\) - 3)4 + (y+2)2 ≥ 0
⇔ (4\(x\) - 3)4 + (y + 2)2 ≤ 0 ⇔
⇔\(\left\{{}\begin{matrix}4x-3=0\\y+2=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-2\end{matrix}\right.\)
Ribi Nkok Ngok Mysterious Person Akai Haruma Nguyễn Đình Dũng Ace Legona Toshiro Kiyoshi ... và những bạn giỏi toán khác help me