Trong mặt phẳng Oxy,viết phương trình đường tròn
a)(C2) có tâm I2(3;-2) và tiếp xúc với Δ:2x+y-1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn C 1 có tâm I 1 1 ; 2 và bán kính R 1 = 1 .
Đường tròn C 2 có tâm I 2 - 1 ; 0 và bán kính R 2 = 1 .
Chọn B
Gọi P là trung điểm MN \(\Rightarrow P\left(0;-1\right)\)
\(\overrightarrow{MN}=\left(2;-4\right)=2\left(1;-2\right)\Rightarrow\) trung trực của MN nhận (1;-2) là 1 vtpt
Phương trình trung trực MN:
\(1\left(x-0\right)-2\left(y+1\right)=0\Leftrightarrow x-2y-2=0\)
Gọi I là tâm đường tròn cần tìm \(\Rightarrow\) I là giao điểm của d và trung trực MN
Tọa độ I thỏa mãn: \(\left\{{}\begin{matrix}x-2y-2=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(-\dfrac{4}{3};-\dfrac{5}{3}\right)\)
\(\overrightarrow{IM}=\left(\dfrac{1}{3};\dfrac{8}{3}\right)\Rightarrow R^2=IM^2=\dfrac{65}{9}\)
Phương trình: \(\left(x+\dfrac{4}{3}\right)^2+\left(y+\dfrac{5}{3}\right)^2=\dfrac{65}{9}\)
Dễ thấy d chứa điểm H(1;1) và OH ⊥ d. Gọi H' là ảnh của H qua phép quay tâm O góc 45 o thì H ′ = ( 0 ; 2 ) . Từ đó suy ra d' phải qua H' và vuông góc với OH'. Vậy phương trình của d' là y = 2 .
a.
\(\overrightarrow{BC}=\left(-2;-4\right)=-2\left(1;2\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtcp
Phương trình BC: \(\left\{{}\begin{matrix}x=-1+t\\y=4+2t\end{matrix}\right.\)
b.
\(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow R^2=AB^2=\left(-2\right)^2+1^2=5\)
Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-3\right)^2=5\)
c.
\(\overrightarrow{AB}.\overrightarrow{BC}=-2.\left(-2\right)+1.\left(-4\right)=0\Rightarrow AB\perp BC\)
\(\Rightarrow H\) trùng B hay tọa độ H là: \(H\left(-1;4\right)\)
Vì `(C_2)` tiếp xúc với `\Delta`
`=> d ( I_2 , \Delta ) = R`
`=> [ | 2 . 3 + 1 . (-2) - 1 | ] / [ \sqrt{ 2^2 + 1^2 } ] = R`
`=> R = 3 / \sqrt{5}`
$\bullet$ Ptr đường tròn `(C_2)` có `I_2 ( 3 ; -2)` và `R = 3 / \sqrt{5}` là:
`( x - 3 )^2 + ( y + 2 )^2 = 9 / 5`