Câu1: cho hàm số : y=(m-1)x +n có đồ thị là đường thẳng d. Tìm m,n biết đường thẳng d đi qua điểm A(1;-1) và có hệ số góc bằng -3
Câu 2:Giải phương trình |2-3x|=2(4-x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2
a)
d đi qua A (1;2), B(2;5)
=> Ta có hệ phương trình: \(\left\{{}\begin{matrix}\left(m-1\right).1+n=2\\\left(m-1\right).2+n=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+n=3\\2m+n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=4\\n=-1\end{matrix}\right.\)
b)
d có hệ số góc a = 3 => d: y = 3x + n
=> m -1 = 3 <=> m = 4
d cắt Ox tại x = -2, y = 0 \(\Leftrightarrow0=3.\left(-2\right)+n\) => n = 6
c)
d trùng d' \(\Rightarrow\left\{{}\begin{matrix}m-1=5\\n=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=6\\n=-3\end{matrix}\right.\)
a: Thay x=2 và y=-3 vào (d), ta được:
\(2\left(2m-1\right)-2m+5=-3\)
=>\(4m-2-2m+5=-3\)
=>2m+3=-3
=>2m=-6
=>\(m=-\dfrac{6}{2}=-3\)
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)
=>m=3/2
Thay m=3/2 vào (d), ta được:
\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)
y=2x+2 nên a=2
Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
\(tan\alpha=2\)
=>\(\alpha\simeq63^026'\)
a: Thay x=4 và y=1 vào y=(m+1)x-3, ta được:
4(m+1)-3=1
=>4m+4-3=1
=>4m+1=1
hay m=0
b: Để hai đường vuông góc thì 5(m+1)=-1
=>m+1=-1/5
hay m=-6/5
c: Thay x=2 vào y=3x-1, ta được:
\(y=3\cdot2-1=5\)
Thay x=2 và y=5 vào (d), ta được:
2(m+1)-3=5
=>2(m+1)=8
=>m+1=4
hay m=3
a: Thay m=2 vào y=(m-1)x+m-1, ta được:
y=(2-1)x+2-1=x+1
Phương trình hoành độ giao điểm là:
x+1=-x+1
=>2x=0
=>x=0
Thay x=0 vào y=x+1, ta được:
y=0+1=1
Vậy: Tọa độ giao điểm là A(0;1)
b: Thay x=3 và y=4 vào y=(m-1)x+m-1, ta được;
3(m-1)+m-1=4
=>4(m-1)=4
=>m-1=1
=>m=2
c: Để hai đường thẳng này cắt nhau thì \(m-1\ne-1\)
=>\(m\ne0\)
\(a,\Leftrightarrow1+m=-2\Leftrightarrow m=-3\\ \Leftrightarrow y=x-3\\ \text{Thay }x=2;y=5\Leftrightarrow5=2-3=-1\left(\text{vô lí}\right)\\ \Leftrightarrow E\notinđths\\ b,\text{PT giao Ox và Oy: }\left\{{}\begin{matrix}y=0\Rightarrow x=-m\Rightarrow E\left(-m;0\right)\Rightarrow OE=\left|m\right|\\x=0\Rightarrow y=m\Rightarrow F\left(0;m\right)\Rightarrow OF=\left|m\right|\end{matrix}\right.\)
Gọi H là chân đường cao từ O đến EF
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OE^2}+\dfrac{1}{OF^2}=\dfrac{1}{2m^2}=\dfrac{1}{3^2}=\dfrac{1}{9}\)
\(\Leftrightarrow m^2=\dfrac{9}{2}\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{\sqrt{2}}\\m=-\dfrac{3}{\sqrt{2}}\end{matrix}\right.\)
a: Để hàm số đồng biến thì m-3>0
=>m>3
b: Vì (d) đi qua O(0;0) và B(-1;2) nên ta có hệ:
0(m-3)+n=0 và -(m-3)+n=2
=>n=0 và m-3=-2
=>m=1 và n=0
c: Vì (d)//y=x-2 nên m-3=1
=>m=4
=>(d): y=x+n
Thay x=0 và y=5 vào (d), ta được:
n+0=5
=>n=5
=>(d): y=x+5
d: Vì (d) đi qua A(2;1) và B(3;0) nên ta có hệ:
2(m-3)+n=1 và 3(m-3)+n=0
=>2m-6+n=1 và 3m-9+n=0
=>2m+n=7 và 3m+n=9
=>m=2 và n=3
2:
a: Hệ số góc là 5 nên -2m+1=5
=>-2m=4
=>m=-2
b: (d1)//(d)
=>-2m+1=3 và m+3<>7
=>m=-1
c: Hai đường vuông góc với nhau
=>-1/2(-2m+1)=-1
=>m^2-1/2+1=0
=>m^2+1/2=0(loại)
Thay x=2 và y=-9 vào (d), ta được:
2(3m-2)+n-1=-9
=>6m-4+n-1=-9
=>6m+n=-9+5=-4(1)
Thay x=1 và y=2 vào (d), ta được:
1(3m-2)+n-1=2
=>3m-2+n-1=2
=>3m+n=5(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}6m+n=-4\\3m+n=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3m=-9\\3m+n=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n=5-\left(-9\right)=14\\m=-3\end{matrix}\right.\)
Câu 1:
A(1;-1) thuộc d nên -1=(m-1).1+n
<=> m+n=0
Hệ số góc k=-\(\frac{a}{b}=-\frac{\left(m-1\right)}{n}\)=-3
<=> m-3n=1
\(\left\{{}\begin{matrix}m+n=0\\m-3n=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m=-n\\-n-3n=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m=\frac{1}{4}\\n=-\frac{1}{4}\end{matrix}\right.\)
cảm ơn bạn