Đồ thị hàm số y = a x + b x - 1 cắt trục Oy tại điểm M(0;-1), tiếp tuyến của đồ thị tại M có hệ số góc k = -3. Các giá trị của a, b là
A. a = 1; b = 1
B. a = 2; b = 1
C. a = 1; b = 2
D. a = 2; b = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay y=0 vào (1), ta được:
2x-1=0
hay \(x=\dfrac{1}{2}\)
Thay x=0 vào (1), ta được:
\(y=2\cdot0-1=-1\)
Vậy: \(A\left(\dfrac{1}{2};0\right)\); B(0;-1)
Thay y=0 vào (2), ta được:
x-1=0
hay x=1
Thay x=0 vào (2), ta được:
y=0-1=-1
Vậy: M(1;0); N(0;-1)
\(1,m=1\Leftrightarrow y=2x+4\\ 2,\text{PT giao Ox: }y=0\Leftrightarrow\left(3m-1\right)x=-4\Leftrightarrow x=\dfrac{4}{1-3m}\Leftrightarrow A\left(\dfrac{4}{1-3m};0\right)\Leftrightarrow OA=\dfrac{4}{\left|1-3m\right|}\\ \text{PT giao Oy: }x=0\Leftrightarrow y=4\Leftrightarrow B\left(0;4\right)\Leftrightarrow OB=4\\ S_{OAB}=\dfrac{1}{2}OA\cdot OB=6\\ \Leftrightarrow\dfrac{1}{2}\cdot\dfrac{4}{\left|1-3m\right|}\cdot4=6\\ \Leftrightarrow\dfrac{8}{\left|1-3m\right|}=6\\ \Leftrightarrow\left|1-3m\right|=\dfrac{4}{3}\Leftrightarrow\left[{}\begin{matrix}1-3m=\dfrac{4}{3}\\3m-1=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{9}\\m=\dfrac{7}{9}\end{matrix}\right.\)
Đáp án D
Trên khoảng ( a ; b ) và ( c ; + ∞ ) hàm số đồng biến vì y'>0 đồ thị nằm hoàn toàn trên trục Ox
Hàm số nghịch biến trên các khoảng ( - ∞ ; a ) và (b;c) vì y'<0
Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có
a)Hàm số cắt trục tung tại điểm có tung độ là 3
\(\Rightarrow x=0;y=3\) thay vào hàm số ta được:
\(3=-0+m\Leftrightarrow m=3\)
Vậy m=3
b)Hàm số cắt trục hoành tại điểm có hoành độ là -1
\(\Rightarrow x=-1;y=0\) thay vào hàm số ta được:
\(0=-1+m\Leftrightarrow m=1\)
Vậy m=1
b: Để hai đường song song thì m-2=2
=>m=4
c: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\x=\dfrac{-2}{m-2}\end{matrix}\right.\Leftrightarrow OA=\dfrac{2}{\left|m-2\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Leftrightarrow OB=2\)
SAOB=1
=>1/2*4/|m-2|=1
=>4/|m-2|=2
=>|m-2|=2
=>m=4 hoặc m=0
a, Hàm số đồng biến khi m - 2 > 0 => m > 2
b, Đồ thị hàm số y = ( m-2)x + m song song với y = -x - 1
⇔ m - 2 = -1 ; m # -1=> m = 1
với m = 1 thì đồ thị hàm số y = ( m-2)x + m có dạng y = -x + 1 và song song với đồ thị y = -x -1
c, Đồ thị hàm số y = (m-2)x + m cắt trục hoành tại điểm có tung độ bằng 0;
nên y = 0 => (m-2)x + m = 0 => x = -m/(m-2)
Đồ thị hàm số cắt trục Ox tại A(-\(\dfrac{m}{m-2}\); 0)
Độ dài đoạn OA là |-\(\dfrac{m}{m-2}\)|
Đồ thị hàm số cắt trục Oy tại điểm có hoành độ bằng 0 nên
x=0; y = m
Giao đồ thị với trục Oy là điểm B( 0;m)
Độ dài đoạn OB là |m|
Tam giác OAB cân ⇔ | -\(\dfrac{m}{m-2}\)| = |m|
\(\Leftrightarrow\) | \(\dfrac{m}{m-2}\)| =|m|
\(\Leftrightarrow\) |m-2| = 1 \(\Leftrightarrow\) \(\left[{}\begin{matrix}m-2=1\\m-2=-1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
vậy với m \(\in\){ 1; 3} thì đồ thị hàm số cắt trục Ox, Oy theo thứ tự tại hai điểm A và B sao cho tam giác OAB cân tại O
Chọn B