Chứng minh rằng trên đồ thị (C) của hàm số \(y=\frac{x^2-x+1}{x+1}\) tồn tại hai điểm A (xA; yB) và B (xB; yB) thỏa mãn \(\left\{{}\begin{matrix}2x_A+y_A=3\\2x_B+x_B=3\end{matrix}\right.\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Lời giải:
TXĐ: $x\neq -1$
Bài toán tương đương với chứng minh PT $2x+\frac{x^2-x+1}{x+1}=3$ có 2 nghiệm phân biệt.
Ta có:
$2x+\frac{x^2-x+1}{x+1}=3$
$\Rightarrow 2x^2+2x+x^2-x+1=3x+3$
$\Leftrightarrow 3x^2-2x-2=0$
Dễ thấy $3.(-1)^2-2(-1)-2\neq 0$ và $\Delta'=1+6=7>0$ nên PT $2x+\frac{x^2-x+1}{x+1}=3$ có 2 nghiệm pb khác $-1$
Ta có đpcm.