K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

(x3 - 4y)(x2 - 2xy + 4y)(x2 + 2xy + 4y) tại x = -2; y = 1/2

Thay x = -2; y = 1/2 vào biểu thức, ta có:

[(-2)3 - 4.(1/2)].[(-2)2 - 2.(-2).(1/2) + 4.(1/2)].[(-2)2 + 2.(-2).(1/2) + 4.(1/2)]

= -10.8.4

= -320

Vậy:..

29 tháng 4 2019

A   =   x 2   +   2 x y   +   y 2   –   4 x   –   4 y   +   1     =   ( x 2   +   2 x y   +   y 2 )   –   ( 4 x   +   4 y )   +   1     =   ( x   +   y ) 2   –   4 ( x   +   y )   +   1

 

Tại x + y = 3, ta có: A = 3 2 – 4.3 + 1 = -2

Đáp án cần chọn là: D

17 tháng 7 2021

undefined

Ta có: \(A=\left(x^2+2xy+y^2\right)-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4\cdot3+1\)

\(=-2\)

22 tháng 9 2017

Đáp án đúng : A

29 tháng 10 2023

\(A=x^2-2xy+2y^2-4y+5\\=(x^2-2xy+y^2)+(y^2-4y+4)+1\\=(x-y)^2+(y-2)^2+1\)

Ta thấy: \(\left(x-y\right)^2\ge0\forall x;y\)

              \(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-y\right)^2+\left(y-2\right)^2\ge0\forall x;y\)

\(\Rightarrow A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\forall x;y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x-y=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=2\end{matrix}\right.\)

\(\Leftrightarrow x=y=2\)

Vậy \(Min_A=1\) khi \(x=y=2\).

$Toru$

a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)

\(=3x^2+3y^2=3\)

b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)

c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)

d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)

=9-12+1

=-2

13 tháng 8 2016

Ta có : C = (x2 - 2xy + y2) + ( y2 – 4y+4)+1 = (x –y)2 + (y -2)2 + 1 Vì (x – y)2 ≥ 0 ; (y-2)2 ≥ 0 Do vậy: C ≥ 1 với mọi x;y Dấu “ = ” Xảy ra khi x-y = 0 và y-2 =0 ⇔ x=y =2Vậy: Min C = 1 khi x = y =2

26 tháng 11 2016

\(C=x^2+2y^2-2xy-4y+5=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)

Đẳng thức xảy ra khi x = y = 2

Vậy min C = 1 khi x = y = 2

26 tháng 11 2016

Ta có : C = (x2 - 2xy + y2) + ( y2 – 4y+4)+1 = (x –y)2 + (y -2)2 + 1 Vì (x – y)2 ≥ 0 ; (y-2)2 ≥ 0 Do vậy: C ≥ 1 với mọi x;y Dấu “ = ” Xảy ra khi x-y = 0 và y-2 =0 ⇔ x=y =2Vậy: Min C = 1 khi x = y =2
 

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)