K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Lời giải:

\(x=4; y=8\Rightarrow x^2=16; 2y=16\Rightarrow x^2=2y\Rightarrow x^2-2y=0\).

Do đó:

\(A=(x^2-2y).\frac{x^2(x^2+2y)(x^4+2y^4)(x^8+2y^8)}{x^{16}+2y^{16}}\)

\(=0.\frac{x^2(x^2+2y)(x^4+2y^4)(x^8+2y^8)}{x^{16}+2y^{16}}=0\)

19 tháng 5 2019

có \(x^2-2y=4^2-2\cdot8=16-16=\)0

do đó C=0

11 tháng 3 2022

\(A=x^3.\left(-\dfrac{5}{4}x^2y\right).\left(\dfrac{2}{5}x^3y^4\right).\\ A=-\dfrac{1}{2}x^8y^5.\)

- Bậc: 8.

- Hệ số: \(-\dfrac{1}{2}.\)

- Biến: \(x;y.\)

\(B=\left(-\dfrac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\dfrac{8}{9}x^2y^3\right).\\ B=\dfrac{2}{3}x^8y^9.\)

- Bậc: 9.

- Hệ số: \(\dfrac{2}{3}.\)

- Biến: \(x;y.\)

2 tháng 1 2022

đáp án: a là đúng

20 tháng 11 2021

A

NV
30 tháng 7 2021

a.

Với \(y=0\) không phải nghiệm

Với \(y\ne0\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5}{y}\\2x\left(x+y\right)+y=\dfrac{5}{y}\end{matrix}\right.\)

\(\Rightarrow3x+2=2x\left(x+y\right)+y\)

\(\Leftrightarrow2x^2+\left(2y-3\right)x+y-2=0\)

\(\Delta=\left(2y-3\right)^2-8\left(y-2\right)=\left(2y-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2y+3+2y-5}{4}=-\dfrac{1}{2}\\x=\dfrac{-2y+3-2y+5}{4}=-y+2\end{matrix}\right.\)

Thế vào pt đầu ...

Câu b chắc chắn đề sai

19 tháng 12 2021

c: \(=\dfrac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}=\dfrac{3x}{x^2+1}\)

20 tháng 12 2021

cho mik xin nốt mấy câu còn lại đi bạn