Cho 2 số thực x, y thỏa mãn: x + y = 5; xy = - 2
Tính \(x^3+y^3\); \(x^5+y^5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x^2+y^2+z^2=1\Rightarrow x^2< 1\Rightarrow x< 1\)
\(\Rightarrow x^5< x^2\)
Tương tự ta có: \(y< 1\Rightarrow y^6< y^2\); \(z< 1\Rightarrow z^7< z^2\)
\(\Rightarrow x^5+y^6+z^7< x^2+y^2+z^2\)
\(\Rightarrow x^5+y^6+z^7< 1\)
\(P=\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}+2020=\dfrac{x^5+y^5}{\left(xy\right)^2}+2020=\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)-\left(xy\right)^2\left(x+y\right)}{\left(-2\right)^2}\)
\(=\dfrac{\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\left[\left(x+y\right)^2-2xy\right]-\left(-2\right)^2.5}{4}\)
\(=\dfrac{\left(-8+6.5\right)\left(25+4\right)-20}{4}=...\)
Đặt \(\left\{{}\begin{matrix}x+2=a\\y-1=b\end{matrix}\right.\)
\(\left(a+\sqrt{a^2+1}\right)\left(b+\sqrt{b^2+1}\right)=1\)
\(\Rightarrow\left\{{}\begin{matrix}b+\sqrt{b^2+1}=\sqrt{a^2+1}-a\\a+\sqrt{a^2+1}=\sqrt{b^2+1}-b\end{matrix}\right.\)
\(\Rightarrow a+b+\sqrt{a^2+1}+\sqrt{b^2+1}=\sqrt{a^2+1}+\sqrt{b^2+1}-a-b\)
\(\Rightarrow a+b=0\)
\(\Rightarrow x+2+y-1=0\)
\(\Rightarrow x+y=-1\)
Ta có: \(\left(x+y\right)^2=x^2+2xy+y^2\) \(\Rightarrow5^2=x^2+y^2-4\)(vì \(\hept{\begin{cases}x+y=5\\xy=-2\end{cases}}\)) \(\Rightarrow x^2+y^2=29\)
Mặt khác \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=5\left(29+4\right)=165\)(vì \(\hept{\begin{cases}x+y=5\left(đề\right)\\xy=-2\left(đề\right)\\x^2+y^2=29\left(cmt\right)\end{cases}}\))
\(\Rightarrow x^3+y^3=165\)(ý thứ nhất)
Ta có \(xy=-2\Rightarrow x^2y^2=4\); \(\hept{\begin{cases}x+y=5\\xy=-2\end{cases}}\Rightarrow xy\left(x+y\right)=5.\left(-2\right)\Rightarrow x^3y+xy^3=-10\Rightarrow-\left(x^3y+xy^3\right)=10\)
Lại có \(\left(x+y\right)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4\)\(\Rightarrow5^4=x^4+y^4+4\left(x^3y+xy^3\right)+6.4\)( bởi lẽ \(\hept{\begin{cases}x+y=5\left(đề\right)\\x^2y^2=4\left(cmt\right)\end{cases}}\))
\(\Rightarrow625=x^4+y^4+4.\left(-10\right)+24\)(vì \(x^3y+xy^3=-10\left(cmt\right)\))\(\Rightarrow x^4+y^4=625-24+40=641\)
Mặt khác nữa, ta có \(x^5+y^5=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(\Rightarrow x^5+y^5=5.\left[\left(x^4+y^4\right)-\left(x^3y+xy^3\right)+x^2y^2\right]\)(vì \(x+y=5\left(đề\right)\))
\(\Rightarrow x^5+y^5=5\left(641+10+4\right)=3275\)(vì \(\hept{\begin{cases}x^4+y^4=641\left(cmt\right)\\-\left(x^3y+xy^3\right)=10\left(cmt\right)\\x^2y^2=4\left(cmt\right)\end{cases}}\)
Vậy \(x^5+y^5=3275\)(ý thứ hai)