K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 5 2024

Ta có:

\(A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{z^2x^2}{y^2}+2x^2+2y^2+2z^2\)

\(\Rightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{z^2x^2}{y^2}+2\) (1)

Mặt khác:

\(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}\ge2\sqrt{\dfrac{x^2z^2y^4}{z^2x^2}}=2y^2\)

Tương tự: \(\dfrac{x^2y^2}{z^2}+\dfrac{z^2x^2}{y^2}\ge2x^2\) ; \(\dfrac{y^2z^2}{x^2}+\dfrac{z^2x^2}{y^2}\ge2z^2\)

Cộng vế \(\Rightarrow\dfrac{x^2y^2}{z^2}+\dfrac{z^2x^2}{y^2}+\dfrac{x^2y^2}{z^2}\ge x^2+y^2+z^2=1\) (2)

Từ (1);(2) \(\Rightarrow A^2\ge1+2=3\)

\(\Rightarrow A\ge\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

20 tháng 7 2016

cứu với!!!!!!!!!!!!!!!!!! Mai đi học rồi đó!!

7 tháng 1 2016

Giúp tôi giải toán ! tick nhé!

7 tháng 1 2016

Giúp tôi giải toán tick nhé!

16 tháng 8 2018

\(\sum\sqrt{\dfrac{1+x^3+y^3}{xy}}\ge\sum\sqrt{\dfrac{3xy}{xy}}\ge3\sqrt{3}\)

chắc là bạn ghi sai đề rồi -_- ;

16 tháng 8 2018

Đúng đấy

18 tháng 11 2021

\(x^2=y.z\Rightarrow x^3=x.y.z\\ y^2=x.z\Rightarrow y^3=x.y.z\\ z^2=x.y\Rightarrow z^3=x.y.z\\ \Rightarrow x^3=y^3=z^3\\ \Rightarrow x=y=z\)