Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT (a - b)² ≥ 0 → a² + b² ≥ 2ab ta có:
+) x² + y² ≥ 2xy
x² + 1 ≥ 2x
+) y² + z² ≥ 2yz
y² + 1 ≥ 2y
+) z² + x² ≥ 2xz
z² + 1 ≥ 2z
=> 2 ( x2 + y2 + z2 ) ≥ 2( xy + yz + xz )
cộng các BĐT trên ta có
3( x2 + y2 + z2 ) + 3 ≥ 2( x + y + z + xy + yz + xz)
=> GTNN của P = 3 khi và chỉ khi x=y=z=1
Ta có :
\(M=x^4+y^4+z^4=\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\)
Áp dụng BĐT \(a^2+b^2\ge2ab\) ( "=" khi a=b ) , ta có :
\(M\ge\frac{2}{3}x^2+\frac{2}{3}y^2+\frac{2}{3}z^2-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{1}{3}\left(2x^2+2y^2+2z^2\right)-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{1}{3}\left[\left(x^2+y^2\right)+\left(y^2+z^2\right)+\left(x^2+z^2\right)\right]-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{2}{3}.\left(xy+yz+xz\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\) ( Vì xy+yz+xz=1 )
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Vậy \(GTNN_M=\frac{1}{3}\) khi \(x=y=z=\frac{1}{\sqrt{3}}\)
( Ko bít đúng Ko ) :)
C1 : Ta sẽ chứng minh bất đẳng thức sau : \(x^2+y^2+z^2\ge xy+yz+zx\)
\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)< =>2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*
Suy ra được : \(x^2+y^2+z^2\ge xy+yz+zx=1< =>\left(x^2+y^2+z^2\right)^2\ge1\)
\(< =>x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2\ge1\)(*)
Bất đẳng thức chứng minh có thể viết theo dạng : \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
\(< =>2\left(x^4+y^4+z^4\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)< =>2x^4+2y^4+2z^4\ge2x^2y^2+2y^2z^2+2z^2x^2\)(**)
Cộng theo vế bất đẳng thức (*) và (**) ta được : \(x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2+2x^4+2y^4+2z^4\ge2x^2y^2+2y^2z^2+2z^2x^2+1\)
\(< =>3\left(x^4+y^4+z^4\right)+2\left(x^2y^2+y^2z^2+z^2x^2\right)-2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge1\)
\(< =>3\left(x^4+y^4+z^4\right)\ge1< =>x^4+y^4+z^4\ge\frac{1}{3}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Vậy GTNN của \(x^4+y^4+z^4=\frac{1}{3}\)đạt được khi \(x=y=z=\frac{1}{\sqrt{3}}\)
C2 : Ta có : \(x^4+y^4+z^4=\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\)
Sử dụng bất đẳng thức \(a^2+b^2\ge2ab< =>\left(a-b\right)^2\ge0\)*đúng*
Khi đó : \(\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\ge\frac{2}{3}x^2+\frac{2}{3}y^2+\frac{2}{3}z^2-\frac{1}{3}\)
\(=\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{1}{3}\)(*)
Ta sẽ chứng minh bất đẳng thức phụ sau : \(x^2+y^2+z^2\ge xy+yz+zx\)
\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)< =>2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*
Áp dụng bất đẳng thức trên ta được :
\(\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{1}{3}\ge\frac{2}{3}\left(xy+yz+zx\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)( Do \(xy+yz+zx=1\)) (**)
Từ (*) và (**) suy ra \(\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\ge\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
Hay \(x^4+y^4+z^4\ge\frac{1}{3}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Vậy GTNN của \(x^4+y^4+z^4=\frac{1}{3}\)đạt được khi \(x=y=z=\frac{1}{\sqrt{3}}\)
xét các số thực dương x,y,z thoả mãn x+y+z=1.Tìm giá trị nhỏ nhất của P=7/x2+y2+z2 +121/14(xy+yz+zx)
Ta có:
\(A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{z^2x^2}{y^2}+2x^2+2y^2+2z^2\)
\(\Rightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{z^2x^2}{y^2}+2\) (1)
Mặt khác:
\(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}\ge2\sqrt{\dfrac{x^2z^2y^4}{z^2x^2}}=2y^2\)
Tương tự: \(\dfrac{x^2y^2}{z^2}+\dfrac{z^2x^2}{y^2}\ge2x^2\) ; \(\dfrac{y^2z^2}{x^2}+\dfrac{z^2x^2}{y^2}\ge2z^2\)
Cộng vế \(\Rightarrow\dfrac{x^2y^2}{z^2}+\dfrac{z^2x^2}{y^2}+\dfrac{x^2y^2}{z^2}\ge x^2+y^2+z^2=1\) (2)
Từ (1);(2) \(\Rightarrow A^2\ge1+2=3\)
\(\Rightarrow A\ge\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)