K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

A<=(x+y+z)3/27*(x+y+y+z+z+x)3/27=8/272

dấu bằng có <~> x=y=z=1/3

7 tháng 9 2021

\(4=x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow\sqrt[3]{xyz}\le\dfrac{4}{3}\Leftrightarrow xyz\le\dfrac{64}{27}\)(BĐT cauchy)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{4}{3}\)

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:

Áp dụng BĐT AM-GM:
$xy\le \frac{(x+y)^2}{4}=\frac{(4-z)^2}{4}$

$\Rightarrow H\leq \frac{z(4-z)^2}{4}$

Tiếp tục áp dụng BĐT AM-GM:
$z(4-z)\leq \frac{(z+4-z)^2}{4}=4$

$4-z\leq 2$ do $z\geq 2$

$\Rightarrow \frac{z(4-z)^2}{4}\leq \frac{4.2}{4}=2$

Hay $H\leq 2$ 

Vậy $H_{\max}=2$ khi $(x,y,z)=(1,1,2)$

AH
Akai Haruma
Giáo viên
24 tháng 9 2020

Bạn tham khảo lời giải tại đây:
Câu hỏi của Phạm Băng Băng - Toán lớp 9 | Học trực tuyến

9 tháng 1 2018

Bài này dễ mà:

Áp dụng BĐT Cô-si:

\(\left(x+y+z\right)^3\ge27xyz\)

\(\Rightarrow\)\(xyz\le\dfrac{1}{27}\)

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\dfrac{\left(x+y+y+z+z+x\right)^3}{27}\)

\(\Rightarrow\)\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\dfrac{8}{27}\)

\(\Rightarrow\)A\(\le\dfrac{8}{729}\)

Dấu ''='' xảy ra\(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

24 tháng 9 2020

tìm x không âm biết

a) √x=√2 b) √x=-2

mọi người giải nhanh bài toán này cho mik với ạ

NV
8 tháng 4 2022

\(\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\dfrac{xyz}{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\dfrac{1}{8}\)

Dấu "=" xảy ra khi \(x=y=z\)

31 tháng 10 2020

Áp dụng bất đẳng thức AM-GM:

\(yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)1}\le yz\frac{\left(x-1\right)+1}{2}=\frac{xyz}{2}\);

\(zx\sqrt{y-4}=\frac{zx}{2}\sqrt{\left(y-4\right)4}\le\frac{zx}{2}\frac{\left(y-4\right)+4}{2}=\frac{xyz}{4}\);

\(xy\sqrt{z-9}=\frac{xy}{3}\sqrt{\left(z-9\right)9}\le\frac{xy}{3}\frac{\left(z-9\right)+9}{2}=\frac{xyz}{6}\)

\(\Rightarrow\frac{yz\sqrt{x-1}+zx\sqrt{y-4}+xy\sqrt{z-9}}{xyz}\le\frac{\frac{xyz}{2}+\frac{xyz}{4}+\frac{xyz}{6}}{xyz}\)\(=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\)

Vậy \(P_{max}=\frac{11}{12}\)

Dấu "=" xảy ra khi \(x=2;y=8;z=18\)