Tính đa thức A biết : x+y-2=0 ; và A= x^3+x^2y-y^2-xy-2x^2+3y+x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.4m+7n=0
=>4m=-7n
=>mx2-4m=0
=>m(x2-4)=0
=>m=0 hoặc x=2 hoặc x=-2
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)
\(\Rightarrow M=0+2019\)
\(\Rightarrow M=2019\)
1)Ta có: 2009 = 2010 - 1 = x - 1(do x = 2010).
Thay 2009 = x - 1 vào đa thức A(x), ta có:
A(2010)=x^2010 - (x-1).x^2009 - (x-1).x^2008 - ... - (x-1).x +1
=x^2010 - x^2010 + x^2009 - x^2008 +x^2008 - ... - x^2 + x +1
=x+1=2010 + 1 =2011.
Vậy giá trị của đa thức A(x) tại x =2010 là 2011
M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019
M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019
\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)
\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)
\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)
\(M=x^2.0-y.0+0+2019\)
\(M=0-0+0+2019\)
\(M=2019\)
+ A ( x ) = ax2 + bx + c
=> A(0) = a . 02 + b.0 + c = c mà A(0) = 4 => c = 4
+ A ( x ) = ax2 + bx + c
=> A ( 1 ) = a . 12 + b.1 + c = a + b + c hay A ( 1 ) = a + b + 4 mà A(1) = 9 => a + b = 5
+ A ( x ) = ax2 + bx + c
=> A ( 2 ) = a . 22 + b . 2 + c = 4a + 2b + c hay A ( 2 ) = 4a + 2b + 4 mà A ( 2 ) = 14 => 4a + 2b = 10
4a + 2b = 2a + 2a + 2b = 2a + 10 mà 4a + 2b = 10 => 2a + 10 = 14 => a = 2 => b = 5 - 2 = 3
\(Ta có: x-y=0 => x=y \)
\(Khi đó, ta có: \)
\(a) M=7x-7y+4ax-4ay-5 =(7x-7x) +(4ax-4ax)-5 \)
\(M=0+0-5=-5 \)
\(Vậy M=-5\)
\(b) N=x(x^2+y^2)-y(x^2+y^2)+3\)
\(=> N=[x(x^2+x^2)-x(x^2+x^2)]+3\)
\(=> N=0+3=3\)
\(Vậy N=3\)