hình thang cân ABCD góc C= góc D-80, các đường chéo cắt nhau tại I sao cho góc CID=60
Cm; tam giác AIB = tam giác DiC
tia phân giác BAI cắt BC tại E so sánh CE và CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B E I C D H
Xét hình thang ABCD có
\(\widehat{C}=\widehat{D}=80^o\) => ABCD là hình thang cân => AD=BC
\(\Rightarrow\widehat{A}=180^o-\widehat{D}=180^o-80^o=100^o\) (Hai góc trong cùng phía)
Tương tự ta cũng có \(\widehat{B}=100^o\)
\(\Rightarrow\widehat{A}=\widehat{B}=100^o\)
Xét tg ABC và tg ABD có
AD=BC (cmt)
\(\widehat{A}=\widehat{B}\) (cmt)
AB chung
=> tg ABD = tg ABC (c.g.c) \(\Rightarrow\widehat{ADB}=\widehat{ACB}\)
Mà \(\widehat{ADB}+\widehat{BDC}=\widehat{ADC}=180^o=\widehat{BCD}=\widehat{ACB}+\widehat{ACD}\)
\(\Rightarrow\widehat{BDC}=\widehat{ACD}=\left(180^o-\widehat{CID}\right):2=60^o\)
=> tg CID là tg đều => CD=CI (1)
Xét tg ABI có
\(\widehat{BAC}=\widehat{ACD}=60^o\) (góc so le trong)
\(\widehat{ABD}=\widehat{BDC}=60^o\) (góc so le trong)
\(\widehat{AIB}=\widehat{CID}=60^o\) (góc đối đỉnh)
=> tg ABI là tg đều
Ta có AE là phân giác \(\widehat{BAI}\) (gt)
=> AE là đường trung trực, đường cao của tg ABI (trong tg đều đường phân giác đồng thời là đường cao, đường trung trực)
Xét tg BIE có
AE đồng thời là đường cao và đường trung trực => tg BIE cân tại E
\(\Rightarrow\widehat{DBC}=\widehat{BIE}\) (góc ở đáy tg cân)
Ta có
\(\widehat{DBC}=\widehat{B}-\widehat{ABD}=100^o-60^o=40^o=\widehat{BIE}\)
=> \(\widehat{BEI}=180^o-\left(\widehat{DBC}+\widehat{BIE}\right)=180^o-\left(40^o+40^o\right)=100^o\)
\(\Rightarrow\widehat{IEC}=180^o-\widehat{BEI}=180^o-100^o=80^o\)
Ta có
\(\widehat{BIC}=180^o-\widehat{CID}=180^o-60^o=120^o\)
\(\Rightarrow\widehat{EIC}=\widehat{BIC}-\widehat{BIE}=120^o-40^o=80^o\)
Xét tg CIE có
\(\widehat{IEC}=\widehat{EIC}=80^o\) => tg CIE cân tại C => CE=CI (2)
Từ (1) và (2) => CE=CD
Do AB // CD ( GT )
⇒^A+^C=180o
⇒2^C+^C=180o
⇒3^C=180o
⇒^C=60o
⇒ ^A = 60o * 2 = 120o
Do ABCD là hình thang cân
⇒ ^C = ^D
Mà ^C = 60o
⇒ ^D = 60o
AB // CD ⇒ ^D + ^B = 180o
⇒ˆB=180o − 60o = 120o
Vậy ^A = ^B = 120o ; ^C= ^D = 60o
Xét 2 tam giác : Tam giác ADB và tam giác BCA có :
AB : Cạnh chung
^DAB=^CBA (Tính chất của hình thang cân)
AC = BD ( Tính chất của hình thang cân)
⇒ ΔADB = ΔBCA ( c−g−c)
⇒ ^CAB = ^DBA (2 góc tương ứng)
⇒ ^OAB = ^OBA
=> Tam giác OAB cân
=> OA = OB
=> Điều phải chứng minh
1/
A B C D H K 1 2,7
Kẻ AH \(\perp\)CD , \(BK\perp CD\)
Xét tam giác vuông AHD và tam giác vuông BKC, có: góc ADH = góc BCK = 600 ; cạnh AH = BK
=> tam giác AHD = tam giác BKC (gcg)
=> DH = KC
Đặt a = DH (a > 0) => AH = \(\sqrt{1-x^2}\)
Có: Sin60 = \(\frac{AH}{AD}\Rightarrow\frac{\sqrt{3}}{2}=\sqrt{1-x^2}\Rightarrow1-x^2=\frac{3}{4}\Rightarrow x^2=\frac{1}{4}\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\left(n\right)\\x=-\frac{1}{2}\left(l\right)\end{array}\right.\)
=> x = 1/2 hay DH = KC = 1/2
Mặt khác: HK = CD - (DH + KC) = 2,7 - (1/2 + 1/2) = 1,7 (m)
Tứ giác ABCD là hình chữ nhật (góc AHK = góc BKH = ABK = 900) => AB = HK = 1,7 (m)
Vậy AB = 1,7m
2/
I D C A B 1 2
a/ Cm: tam giác ICD đều:
Trong tam giác ICD : DB vừa là đường phân giác , vừa là đường cao => tam giác ICD là tam giác cân tại D
=> ID = DC (1)
=> DB vừa là đường trung tuyến => BI = BC = 4cm => IC = 4 + 4 = 8cm (2)
Có: góc IAB = IDC (đồng vị) , góc IBA = góc ICD (đồng vị)
mà góc IDC = góc ICD
=> góc IAB = góc IBA => tam giác IAB cân tại I => IA = IB = 4cm
=> ID = IA + AD = 4 + 4 = 8cm (3)
Từ (1), (2), (3) => ID = DC = IC = 8cm hay tam giác IDC đều
b/ Tính chu vi hình thang ABCD:
Vì tam giác ICD đều => tam giác IAB đều => IA = AB = 4cm
ID = DC = 8cm
Vậy chu vi hình thang ABCD : AB + AD + BC + CD = 4 + 4 + 4 + 8 = 20(cm)
b) Xét ΔFDC có
A\(\in\)FD(gt)
B\(\in\)FC(gt)
AB//CD(gt)
Do đó: \(\dfrac{FA}{AD}=\dfrac{FB}{BC}\)(Định lí Ta lét)
\(\Leftrightarrow\dfrac{FA}{FB}=\dfrac{AD}{BC}=1\)
hay FA=FB
Ta có: FA+AD=FD(A nằm giữa F và D)
FB+BC=FC(B nằm giữa F và C)
mà FA=FB(cmt)
và AD=BC(ABCD là hình thang cân)
nên FD=FC
Ta có: FA=FB(cmt)
FD=FC(cmt)
Do đó: \(FA\cdot FD=FB\cdot FC\)(đpcm)
a) Ta có: ABCD là tứ giác nội tiếp(gt)
nên \(\widehat{A}+\widehat{C}=180^0\)(hai góc đối)(1)
Ta có: ABCD là hình thang(AB//CD)
nên \(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)(2)
Từ (1) và (2) suy ra \(\widehat{C}=\widehat{D}\)
Hình thang ABCD(AB//CD) có \(\widehat{C}=\widehat{D}\)(cmt)
nên ABCD là hình thang cân(Dấu hiệu nhận biết hình thang cân)