tìm m; n biết
a, m- n= m.n=\(\frac{m}{n}\)
b, m+n=3.(m-n)=2.\(\frac{m}{n}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Pt có nghiệm \(x=\sqrt{2}\) tức là
\(2\left(m-4\right)-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow2m-8-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow m\left(3-2\sqrt{2}\right)=10\)
\(\Leftrightarrow m=\frac{10}{3-2\sqrt{2}}\)
b, *Với m = 4 thì pt trở thành
\(\left(4-4\right)x^2-2.4.x+4-2=0\)
\(\Leftrightarrow-8x+2=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
Pt này ko có nghiệm kép
*Với \(m\ne4\)thì pt đã cho là pt bậc 2
Có \(\Delta'=m^2-\left(m-4\right)\left(m-2\right)=m^2-m^2-6m+8=-6m+8\)
Pt có nghiệm kép \(\Leftrightarrow\Delta'=0\)
\(\Leftrightarrow m=\frac{4}{3}\)
Với \(m=\frac{4}{3}\) thì \(\Delta'=0\)
Pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m}{m-4}=\frac{\frac{4}{3}}{\frac{4}{3}-4}=-\frac{1}{2}\)
c, Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)
\(\Leftrightarrow-6m+8>0\)
\(\Leftrightarrow m< \frac{4}{3}\)
\(a,\Leftrightarrow-3\left(m-2\right)+2=1\Leftrightarrow m=\dfrac{7}{3}\)
\(b,\) Gọi \(A\left(x_0;y_0\right)\) là điểm cần tìm
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\\ \Leftrightarrow mx_0-2x_0-y_0+2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\-2x_0-y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cần tìm
\(e,\) PT giao Ox: \(y=0\Leftrightarrow\left(m-2\right)x=-2\Leftrightarrow x=\dfrac{-2}{m-2}\Leftrightarrow A\left(-\dfrac{2}{m-2};0\right)\Leftrightarrow OA=\dfrac{2}{\left|m-2\right|}\)
PT giao Oy: \(x=0\Leftrightarrow y=2\Leftrightarrow B\left(0;2\right)\Leftrightarrow OB=2\)
Để \(S_{OAB}=2\Leftrightarrow\dfrac{1}{2}OA\cdot OB=2\Leftrightarrow\dfrac{2}{\left|m-2\right|}\cdot\dfrac{1}{2}\cdot2=2\)
\(\Leftrightarrow\dfrac{2}{\left|m-2\right|}=2\Leftrightarrow\left|m-2\right|=1\Leftrightarrow\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\) thỏa yêu cầu đề
a) \(\frac{\sqrt{x}-2}{3\sqrt{x}}=-1\)
=> \(-3\sqrt{x}=\sqrt{x}-2\)
=> \(4\sqrt{x}=2\)
=> \(x=\frac{1}{4}\)
b) \(\frac{\sqrt{x}-2}{3\sqrt{x}}<0\) khi :
\(\sqrt{x}-2<0\) => \(x<4\)
Thay x=3 vào pt ta có:
\(\dfrac{2}{x-m}-\dfrac{5}{x+m}=1\\ \Leftrightarrow\dfrac{2}{3-m}-\dfrac{5}{3+m}=1\\ \Leftrightarrow\dfrac{2\left(3+m\right)-5\left(3-m\right)}{\left(3-m\right)\left(3+m\right)}=1\\ \Rightarrow6+2m-15+5m=3^2-m^2\\ \Leftrightarrow-9+7m-9+m^2-0\\ \Leftrightarrow m^2+7m-18=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m=-9\end{matrix}\right.\)
a)M là p/s <=>x+5 \(\ne\) 0<=>x \(\ne\) -5
Vậy x \(\ne\) -5 thì M là p/s
b)M nguyên<=>x-2 chia hết cho x+5
<=>(x+5)-7 chia hết cho x+5
mà x+5 chia hết cho x+5
=>7 chia hết cho x+5
=>x+5 E Ư(7)={-7;-1;1;7}
=>x E {-12;-6;-4;2}
vậy...
`# \text {Ryo}`
`1,`
`a)`
`M + N`
`= 2,5x^3-0,1x^2y+y^3 + 4x^2y-3,5x^3+7xy^2-y^3`
`= (2,5x^3 - 3,5x^3) + (-0,1x^2y + 4x^2y) + (y^3 - y^3) + 7xy^2`
`= -x^3 + 3,9x^2y + 7xy^2`
Bậc của đa thức: `3`
`b)`
`M - N`
\(=2,5x^3-0,1x^2y+y^3 - (4x^2y-3,5x^3+7xy^2-y^3) \\ = 2,5x^3 - 0,1x^2y + y^3 - 4x^2y+3,5x^3-7xy^2+y^3\)
\(= (2,5x^3 + 3,5x^3) + (-0,1x^2y - 4x^2y) + (y^3 + y^3) - 7xy^2\)
\(= 6x^3 - 4,1x^2y + 2y^3 - 7xy^2\)
Bậc của đa thức: `3.`