K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

Ta có: góc A + góc B + góc C =180o(tổng 3 góc của một tam giác)

=>60o+2 góc C+góc C =180o

=>60o+3 góc C=180o

=>3 góc C=120o

=>góc C=40o

4 tháng 1 2016

nãy giờ làm mà vẫn chưa lên **** nào

28 tháng 8 2019

Đáp án A

22 tháng 1 2019

Ta có ∠C = 180o - 60o - 30o = 90o

Vì ∠C > ∠A > ∠B ⇒ AB > BC > AC. Chọn C

22 tháng 12 2017

Áp dụng định lý Sin trong tam giác ABC ta có:

Giải bài 9 trang 62 sgk Hình học 10 | Để học tốt Toán 10

Vậy bán kính đường tròn ngoại tiếp tam giác bằng 2√3.

23 tháng 9 2018

Đáp án B

18 tháng 8 2021

giúp tui ikkkkkk mà sao ko ai trả lời hộ tui vại

a: Ta có: \(\widehat{ABD}=\widehat{BAM}\)

\(\widehat{DBC}=\widehat{AMB}\)

mà \(\widehat{ABD}=\widehat{DBC}\)

nên \(\widehat{BAM}=\widehat{AMB}\)

a: Ta có: \(\widehat{ABD}=\widehat{BAM}\)

\(\widehat{DBC}=\widehat{AMB}\)

mà \(\widehat{ABD}=\widehat{DBC}\)

nên \(\widehat{BAM}=\widehat{AMB}\)

a: Ta có: \(\widehat{ABD}=\widehat{BAM}\)

\(\widehat{DBC}=\widehat{BMA}\)

mà \(\widehat{ABD}=\widehat{DBC}\)

nên \(\widehat{BAM}=\widehat{BMA}\)

19 tháng 2 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔABC ta có:

∠A + ∠B + ∠C = 180o(tổng ba góc trong tam giác)

⇒∠B = 180o - (∠A +∠C )

⇒x = 180o - (60o + 50o) = 70o

(∠B1) =(∠B2 ) = (1/2 )∠B (vì BD là tia phân giác)

⇒ ∠B1 = ∠B2 = 70o : 2 = 35o

Trong ΔBCD ta có ∠(ADB) là góc ngoài tại đỉnh D

⇒ ∠(ADB) = ∠(B1 ) + ∠C (tính chất góc ngoài tam giác)

Nên ∠(ADB) = 35º + 50º = 85º

+) Do ∠(ADB) + ∠(BDC) = 180o(hai góc kề bù)

⇒∠(BDC) = 180o-∠(ADB) = 180o - 85o = 95o

17 tháng 11 2021

Vì ΔABC=ΔMNO

\(\widehat{A}=\widehat{M};\widehat{B}=\widehat{N};\widehat{C}=\widehat{O}\)

nên \(\widehat{A}+\widehat{B}+\widehat{C}=180\text{°}\)(tổng 3 góc trong 1 tam giác)

\(60\text{°}+80\text{°}+\widehat{C}=180\text{°}\)

\(140\text{°}+\widehat{C}=180\text{°}\)

\(\widehat{C}=40\text{°}\)

\(\widehat{M}=\widehat{A}\left(=60\text{°}\right);\widehat{N}=\widehat{B}\left(=80\text{°}\right);\widehat{C}=\widehat{O}\left(=40\text{°}\right).\)