Cho hai đa thức ; f(x)=(x-1)(x+2) g(x)=x^3+ax^+bx+2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,`
`P(x)=5x^3-3x+7-x`
`= 5x^3+(-3x-x)+7`
`= 5x^3-4x+7`
Bậc của đa thức: `3`
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`= -5x^3+(2x+2x)-x^2+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc của đa thức: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=Q(x)+P(x)`
`M(x)=( 5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7-5x^3-x^2+4x-5`
`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`= -x^2+2`
Vậy, `M(x)=-x^2+2`
`c,`
`-x^2+2=0`
`=> -x^2=0-2`
`=> -x^2=-2`
`=> x^2=2`
`=> x= \sqrt {+-2}`
Vậy, nghiệm của đa thức là `x={ \sqrt{2}; -\sqrt {2} }.`
a: P(x)=5x^3-4x+7
Q(x)=-5x^3-x^2+4x-5
b: M(x)=P(x)-Q(x)
=5x^3-4x+7+5x^3+x^2-4x+5
=10x^3+x^2-8x+12
`a,`
`P(x)=5x^3 - 3x + 7 - x`
`= 5x^3 +(-3x-x)+7`
`= 5x^3-4x+7`
Bậc: `3`
`Q(x)=-5x^3 + 2x - 3 + 2x - x^2 - 2`
`= -5x^3-x^2+(2x+2x)+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=P(x)+Q(x)`
`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`
`M(x)=(5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`M(x)=-x^2+2`
`c,`
`M(x)=-x^2+2=0`
`\leftrightarrow -x^2=0-2`
`\leftrightarrow -x^2=-2`
`\leftrightarrow x^2=2`
`\leftrightarrow `\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy, nghiệm của đa thức là \(x=\left\{\sqrt{2};-\sqrt{2}\right\}\)
a: \(P\left(x\right)=5x^3-4x+7\)
Bậc 3
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
Bậc 3
b: M(x)=P(x)+Q(x)
=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2
c: M(x)=0
=>2-x^2=0
=>\(x=\pm\sqrt{2}\)
* Giả sử, cho hai đa thức biết:
- Trong đa thức thứ nhất: hệ số a của đơn thức \(a{x^4}\) .
- Trong đa thức thứ hai: hệ số \( - a\)của đơn thức \( - a{x^4}\).
Như vậy, bậc của tổng của hai đa thức sẽ là bậc 3. (Vì khi cộng hai đa thức với nhau, ta có \(a + ( - a) = 0\) nên biến với số mũ là 4 sẽ không còn).
Vậy bạn Minh nói như vậy là không đúng.
* Giả sử, cho hai đa thức biết:
- Trong đa thức thứ nhất: hệ số a của đơn thức \(a{x^4}\) .
- Trong đa thức thứ hai: hệ số \(a\)của đơn thức \(a{x^4}\).
Như vậy, bậc của hiệu của hai đa thức sẽ là bậc 3. (Vì khi trừ hai đa thức với nhau, ta có \(a - a = 0\) nên biến với số mũ là 4 sẽ không còn).
Vậy bạn Quân nói như vậy là không đúng.
\(\dfrac{A}{B}=\dfrac{8x^3+2x^2-8x-2-3}{4x+1}\)
\(=2x^2-2-\dfrac{3}{4x+1}\)
Viết đa thức P(x) = 5x3 – 4x2 +7x – 2 dưới dạng hiệu của hai đa thức một biến.
Có nhiều cách viết, ví dụ:
Cách 1: Nhóm các hạng tử của đa thức P(x) thành 2 đa thức khác
P(x) = 5x3 – 4x2 +7x – 2 = (5x3 + 7x) - (4x2 + 2)
⇒ P(x) là hiệu của hai đa thức một biến là: 5x3 + 7x và 4x2 + 2
P(x) = 5x3 – 4x2 +7x – 2 = (5x3 – 4x2) – (-7x + 2)
⇒ P(x) là hiệu của hai đa thức một biến là: 5x3 – 4x2 và -7x + 2
Cách 2: Viết các hạng tử của đa thức P(x) thành tổng hay hiệu của hai đơn thức. Sau đó nhóm thành 2 đa thức khác
Ví dụ: Viết 5x3 = 6x3 - x3; – 4x2 = – 3x2 - x2
Nên: P(x) = 5x3 – 4x2 +7x – 2 = 6x3 - x3 – 3x2 - x2 +7x – 2 = (6x3 – 3x2 + 7x) - (x3 + x2 + 2)
⇒ P(x) là hiệu của hai đa thức một biến là: 6x3 – 3x2 + 7x và x3 + x2 + 2