Cho a, b, c là bốn số khác nhau và khác 0 thỏa mãn: b2 = ac ; c2 = bd và b3 + c3 + d3 khác 0
Chứng minh: a3 + b3 + c3 / b3 + c3 + d3 = a / d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$
$=(ad+bc)t$
Mà:
$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$
Tương tự: $t> ac+bd$
Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:
$ab+cd> ad+bc, ac+bd> ad+bc$
Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý
Do đó ta có đpcm.
Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b3 = b3/c3 = c3/d3 (1)
mà b2 = ac ; c2 = bd
=> b3/c3 = bac/cbd = a/d (2)
Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d
Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b3 = b3/c3 = c3/d3 (1)
mà b2 = ac ; c2 = bd
=> b3/c3 = bac/cbd = a/d (2)
Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d
\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c};c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}\left(1\right)\\ \text{Đặt }\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;b=ck;c=dk\\ \Rightarrow a=bk=ck^2=dk^3\\ \Rightarrow\dfrac{a}{d}=k^3\\ \text{Mà }\dfrac{a}{b}=k\Rightarrow\dfrac{a^3}{b^3}=k^3\\ \Rightarrow\dfrac{a}{d}=\dfrac{a^3}{b^3}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)
b2 = ac => a/b = b/c
c2 = bd => b/c = c/d
=> a/b = b/c = c/d => a3/b3 = b3/c3 = c3/d3 = (a3 + b3 + c3) / (b3 + c3 + d3) (Theo t/c của dãy tỉ số bằng nhau)
Mà a3/b3 = a/b .a/b .a/b = a/b. b/c . c/d = a/d
Nên (a3 + b3 + c3) / (b3 + c3 + d3) = a/d
Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b3 = b3/c3 = c3/d3 (1)
Mà b2 = ac ; c2 = bd
=> b3/c3 = bac/cbd = a/d (2)
Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d
b^2=ac
=>b/a=c/b=k
=>b=ak; c=bk=ak*k=ak^2
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+a^2k^2}{a^2k^2+a^2k^4}=\dfrac{1}{k^2}\)
\(\dfrac{a}{c}=\dfrac{a}{ak^2}=\dfrac{1}{k^2}\)
=>\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
Ta có : a2 + b2 = c2 + d2
⇒a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) ⋮2 nên là hợp số
Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d )
= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) ⋮2
⇒a + b + c + d ⋮2 nên cũng là hợp số