K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

Chúc bạn có 1 ngày vui vẻ!!!

Bài này bảo tính phần nguyên đúng ko -,- [A] 

\(A=\sqrt[3]{60+\sqrt[3]{60+\sqrt[3]{60}+...+\sqrt[3]{60}}}\)

\(A>\sqrt[3]{27}=3\) \(\left(1\right)\)

\(A< \sqrt[3]{60+\sqrt[3]{60+\sqrt[3]{60+...+\sqrt[3]{64}}}}=4\) \(\left(2\right)\)

Từ (1) và (2) suy ra \(3< A< 4\) nên phần nguyên của A là 3 

Chúc bạn học tốt ~ 

9 tháng 8 2018

Thay số cuối bằng 64, rút gọn ra 4 nên A<4

Hiển nhiên A> căn bậc 3 của 27=3

Do đó 3<A<4 nên phần nguyên của A là 3

2 tháng 9 2018

A > \(\sqrt[3]{27}\)=3

 A <  \(\sqrt[3]{60+\sqrt[3]{60+\sqrt[3]{60+...+\sqrt[3]{60+4}}}}\) = 4

2 tháng 1 2019

Chọn D: Nhân 45 với 60 rồi lấy kết quả nhận được chia cho 100

28 tháng 1 2024

b

 

24 tháng 6 2019

8 tháng 2 2018

AH
Akai Haruma
Giáo viên
26 tháng 5 2018

Lời giải:

Dễ thấy: \(A>\sqrt[3]{60}>\sqrt[3]{27}=3\)

Để cm \(A< 4\) ta sử dụng quy nạp:

Ta thấy \(A_1=\sqrt[3]{60}< \sqrt[3]{64}=4\)

\(A_2=\sqrt[3]{60+\sqrt[3]{60}}< \sqrt[3]{60+\sqrt[3]{64}}=4\)

.....

Giả sử nhận định đúng đến \(n=k\), tức là:

\(A_k=\underbrace{\sqrt[3]{60+\sqrt[3]{60+....+\sqrt[3]{60}}}}_{\text{k số 60}}<4\)

Ta thấy \(A_{k+1}=\underbrace{\sqrt[3]{60+\sqrt[3]{60+\sqrt[3]{60+...+\sqrt[3]{60}}}}}_{\text{k+1 số 60}}=\sqrt[3]{60+A_k}\)

\(<\sqrt[3]{60+4}\Leftrightarrow A_{k+1}< 4\), tức là nhận định đúng với cả $n=k+1$

Do đó \(A< 4\)

Vậy $3< A< 4$. Theo định nghĩa phần nguyên suy ra \([A]=3\)

D.Nhân 45 với 60 rồi lấy kết quả nhận được chia cho 100

mk nha b

7 tháng 6 2016

C nhân 45 với 100 rồi lấy kết quả nhận được chia cho 60