Cho hàm số y = x − 3 x + 1 (C) và điểm M a ; b thuộc đồ thị (C). Đặt T = 3 ( a + b ) + 2 a b , khi đó để tổng khoảng cách từ điểm M đến hai trục toạ độ là nhỏ nhất thì mệnh đề nào sau đây là đúng?
A. − 3 < T < − 1.
B. − 1 < T < 1.
C. 1 < T < 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xác định hệ số a, biết rằng đồ thị của hàm số y=ax đi qua điểm A(6;2).Điểm B(-9;3), điểm C(7;-2) có thuộc đồ thị hàm số không ? Tìm trên đồ thị của hàm số điểm D có hoành độ bằng -4,điểm E có tung độ bằng 2
1. a) Để hs trên là hs bậc nhất khi và chỉ khi a>0 --> 3+2k>0 --> k >\(\frac{-3}{2}\)
b) Vì đths cắt trục tung tại điểm có tung độ = 5 --> x=0, y=5
Thay y=5 và x=0 vào hs và tìm k
2. a) Tự vẽ
b) Hệ số góc k=\(\frac{-a}{b}=\frac{-2}{4}=\frac{-1}{2}\)
c) Phương trình hoành độ giao điểm là:\(2x+4=-x-2\)(tìm x rồi thay x vào 1 trong 2 pt --> tính y) (x=-2; y=0)
3. Vì 3 đg thẳng đồng quy -->d1 giao d2 giao d3 tại 1 điểm (giao kí hiệu là chữ U ngược)
Tính tọa độ giao điểm của d1 và d2 --> x=2;y=1
Điểm (2;1) thuộc d3 --> Thay x=2 và y=1 vào d3 -->m=3
Lời giải:
Vì $M\in (y=\frac{a}{x})$ nên:
$y_M=\frac{a}{x_M}\Rightarrow a=x_M.y_M=6.6=36$
Vậy hàm số có công thức $y=\frac{36}{x}(*)$
Giờ bạn thay tung độ (y) và hoành độ (x) của từng điểm vô xem có đúng với $(*)$ không thì thu được không có điểm nào thuộc ĐTHS.
Đáp án A
Điểm M a ; b thuộc đồ thị (C)
=> b = a − 3 a + 1
⇒ a + b = a + a − 3 a + 1 = a + 4 a + 1 − 1 ≥ a + 1 + 4 a + 1 − 2 ≥ a + 1 + 4 a + 1 − 2 ≥ 4 − 2 = 2
Như vậy tổng khoảng cách từ M tới hai trục tọa độ nhỏ nhất bằng 2 ⇔ a = 1 b = − 1 ⇒ T = − 2