Mn giúp em với:
Tìm các số tự nhiên a và b biết a - b = 6 và BCNN(a ; b) = 180
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a\cdot b=3200\\ \Rightarrow3200⋮a;b\\ \Rightarrow3200\in BC\left(a;b\right)\\ \Rightarrow3200⋮BCNN\left(a;b\right)\Rightarrow3200⋮240\)
mà \(3200⋮̸240\)( vô lý)
⇒ a;b không tồn taị
Lời giải:
$\overline{ab}\vdots a$
$\Rightarrow 10a+b\vdots a$
$\Rightarrow b\vdots a$.
Đặt $b=ak$ với $k$ tự nhiên.
Lại có:
$\overline{ab}\vdots b$
$\Rightarrow 10a+b\vdots b$
$\Rightarrow 10a\vdots b$
$\Rightarrow 10a\vdots ak$
$\Rightarrow 10\vdots k$
$\Rightarrow k\in\left\{1;2 ; 5; 10\right\}$
Nếu $k=1$ thì $a=b$. Khi đó mọi số $11,22,33,44,55,66,77,88,99$ đều tm
Nếu $k=2$ thì $b=2a$. Khi đó các số $12, 24, 36, 48$ thỏa mãn
Nếu $k=5$ thì $b=5a$. Khi đó chỉ có số $15$ thỏa mãn
Nếu $k=10$ thì $b=10a$. TH này vô lý vì $a,b$ đều là stn có 1 chữ số và $a>0$
Theo công thức, ta có:
UCLN.BCNN = a.b (Phần này bạn không chép vào)
(Bắt đầu từ đây thì bạn chép)
Theo bài ra, ta có:
UCLN(a; b) = 10
BCNN(a; b) = 120
=> a.b = 10.120 = 1200 (*)
Vì UCLN(a; b) = 10
=> đặt a = 10k (1) (k, q thuộc N*; UCLN(k, q) = 1)
đặt b = 10q (2)
Thay a = 10k và b = 10q vào (*), ta có:
10k.10q = 1200.
(10.10).(k.q) = 1200
100.k.q = 1200
k.q = 1200 : 100 = 12. (3)
=> (k; q) thuộc {(1; 12); (2; 6); (3; 4); (4; 3); (6; 2); (12; 1)}
Mà UCLN(k; q) = 1
=> (k; q) thuộc {(1; 12); (3; 4); (4; 3); (12; 1)} (4)
Từ (1); (2); (3); (4), ta có bảng sau:
k | 1 | 3 | 4 | 12 |
q | 12 | 4 | 3 | 1 |
a | 10 | 30 | 40 | 120 |
b | 120 | 40 | 30 | 10 |
Vậy (a; b) thuộc {(10; 120); (30; 40); (40; 30); (120; 10)}
Vì BCNN (a,b) = 300 và ƯCLN (a,b)=15
Suy ra: a.b = 300.15 = 4500
Vì ƯCLN (a,b) =15 nên: a= 15m và b= 15n (với ƯCLN (m,n) = 1).
Vì a+15 =b,=>15m+15 =15n, =>15(m+1) =15n, => m+1= n.
Mà a.b =4500 nên ta có: 15m.15n =4500=>15.15.m.n =4500=> m.n = 20
Suy ra: m=1 và n=20 hoặc m=4 và n=5
Gọi d = ƯCLN(a,b) => a = md và b = nd với m,n thuộc N; (m,n) = 1
Do đó: a - b = d(m - n) = 6 (1)
BCNN(a,b) = mnd = 180 (2)
=> d thuộc ƯC(6, 180) --> d thuộc {1; 2; 3; 6}
Thay lần lượt các giá trị của d ở (1) và (2) để tính m, n ta được các kết quả
Còn lại bạn tự giải nhé