Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a\cdot b=3200\\ \Rightarrow3200⋮a;b\\ \Rightarrow3200\in BC\left(a;b\right)\\ \Rightarrow3200⋮BCNN\left(a;b\right)\Rightarrow3200⋮240\)
mà \(3200⋮̸240\)( vô lý)
⇒ a;b không tồn taị
a) Ta có: \(n+1\inƯ\left(5\right)\)
\(\Rightarrow n+1\in\left\{1;5\right\}\)
\(\Rightarrow n\in\left\{0;4\right\}\)
_Học tốt_
2n+ 5 là số lẻ mà bọi của 4 là số chẵn
vậy ước của 2n + 1 và 2n + 5 không là 4 với mọi n thuộc N
học tốt
a) \(n\inƯ\left(20\right)=\left\{1;2;4;5;10;20\right\}\)
b) \(\left(n-1\right)\inƯ\left(28\right)=\left\{1;2;4;7;14;28\right\}\)
\(\Rightarrow n\in\left\{2;3;5;8;15;29\right\}\)
c) \(\left(2n+1\right)\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow2n\in\left\{0;1;2;5;8;17\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1;4\right\}\)
d) \(n\left(n+2\right)=8\)
\(\Leftrightarrow n^2+2n-8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
\(\left(x-4\right)\left(x-6\right)< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-4< 0\\x-6>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-4>0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 4\\x>6\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x>4\\x< 6\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow4< x< 6\)
Mà x là số nguyên nên x=5
Để \(\left(x-4\right)\left(x-6\right)< 0\) thì \(\left(x-4\right)\) và \(\left(x-6\right)\) trái dấu
Hay \(x-4>0;x-6< 0\) => \(x>4;x< 6\Rightarrow x=\left\{5\right\}\)
hoặc \(x-4< 0;x-6>0\) => \(x< 4;x>6\Rightarrow x\in\varnothing\)
Vậy: Giá trị x nguyên thỏa mãn điều kiện là 5.
Lời giải:
$\overline{ab}\vdots a$
$\Rightarrow 10a+b\vdots a$
$\Rightarrow b\vdots a$.
Đặt $b=ak$ với $k$ tự nhiên.
Lại có:
$\overline{ab}\vdots b$
$\Rightarrow 10a+b\vdots b$
$\Rightarrow 10a\vdots b$
$\Rightarrow 10a\vdots ak$
$\Rightarrow 10\vdots k$
$\Rightarrow k\in\left\{1;2 ; 5; 10\right\}$
Nếu $k=1$ thì $a=b$. Khi đó mọi số $11,22,33,44,55,66,77,88,99$ đều tm
Nếu $k=2$ thì $b=2a$. Khi đó các số $12, 24, 36, 48$ thỏa mãn
Nếu $k=5$ thì $b=5a$. Khi đó chỉ có số $15$ thỏa mãn
Nếu $k=10$ thì $b=10a$. TH này vô lý vì $a,b$ đều là stn có 1 chữ số và $a>0$