Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh
a) A B 2 = B H . B C ;
b) A H 2 = B H . H C .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác HBA và tam giác ABC có
^B _ chung ; ^BHA = ^BAC = 900
Vậy tam giác HBA ~ tam giác ABC (g.g)
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}cm\)
\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)
b, Xét tam giác CHI và tan giác CAH có
^AIH = ^CHA = 900
^C _ chung
Vậy tam giác CHI ~ tam giác CAH (g.g)
\(\dfrac{CH}{AC}=\dfrac{CI}{CH}\Rightarrow CH^2=CI.AC\)
Lời giải:
a. Tứ giác $ADHE$ có 3 góc vuông $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên $ADHE$ là hình chữ nhật
$\Rightarrow AH=DE$
b.
Gọi $T$ là giao $AM, DE$
Do $AM$ là đường trung tuyến ứng với cạnh huyền nên $AM=\frac{BC}{2}=MC$
$\Rightarrow AMC$ cân tại $M$
$\Rightarrow \widehat{TAE}=\widehat{MAC}=\widehat{C}$
$ADHE$ là hcn nên $\widehat{TEA}=\widehat{DEA}=\widehat{DHA}=90^0-\widehat{BHD}=90^0-\widehat{C}$
Vậy: $\widehat{TAE}+\widehat{TEA}=90^0$
$\Rightarrow \widehat{ATE}=90^0$
$\Rightarrow AM\perp DE$
a: Xét ΔAHC có
E là trung điểm của AC
EF//AH
Do đó: F là trung điểm của CH
Xét ΔAHC có
E là trung điểm của AC
F là trung điểm của CH
Do đó: EF là đường trung bình của ΔAHC
Suy ra: \(EF=\dfrac{AH}{2}\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền CB
nên \(AH^2=HB\cdot HC\)
hay \(AH=\sqrt{HB\cdot HC}\left(2\right)\)
Từ (1) và (2) suy ra \(EF=\dfrac{\sqrt{HB\cdot HC}}{2}\)
hay \(EF^2=\dfrac{HB\cdot HC}{4}\)
d) Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)
b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)
Do đó:ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)
a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HD là đường cao
nên \(AD\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AD\cdot AC\)
a) Chứng minh được
b) HS tự chứng minh