K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
4 tháng 10 2021

ta có :

undefined

a: Xét (O) có 

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

TỪ (1) và (2) suy ra OM⊥AB

30 tháng 5 2022

mk lớp 5 

ko bt

7 tháng 5 2021

Gọi G là giao điểm của DE và CH.  I là giao điểm của  DE và OC. F là giao điểm của OC với (O)

Xét tam giác CGI và tam giác COH có:

\(\hept{\begin{cases}\widehat{HCO}chung\\\widehat{CIG}=\widehat{CHO}=90^0\end{cases}\Rightarrow\Delta CGI~\Delta COH\left(g-g\right)}\)

\(\Rightarrow\frac{CG}{CI}=\frac{CO}{CH}\)

\(\Rightarrow CG.CH=CO.CI\)

\(\Rightarrow2.CG.CH=2.CO.CI=CF.CI\)(1)

Áp dụng hệ thức lượng trong tam giác CEF vuông tại E có EI là đường cao ta có:

\(CF.CI=CE^2=CH^2\)(2) 

Từ (1) và (2) \(\Rightarrow2.CG.CH=CH^2\)

\(\Rightarrow2CG=CH\)

\(\Rightarrow G\)là trung điểm của CH mà DE cắt CH tại G

\(\Rightarrow DE\)đi qua trung điểm của CH

a: Sửa đề; OD là trung trực của BC

Xét (O) có

DB,DC là tiếp tuyến

=>DB=DC

mà OB=OC

nên OD là trung trực của BC

b: Xét (O) có

ΔBCA nội tiếp

BA là đường kính

Do đó: ΔBCA vuông tại C

=>BC vuông góc CA

=>CA//OD

Xét ΔBOD vuông tại B và ΔCAB vuông tại C có

góc BOD=góc CAB

Do đó: ΔBOD đồng dạng với ΔCAB

=>BO/CA=OD/AB

=>BO*AB=CA*OD

=>CA*OD=2R^2