Cho tam giác SPQ và tam giác ACB có PS = CA; PQ = CB. Cần thêm điều kiện gì để hai tam giác SPQ và tam giác ACB bằng nhau theo trường hợp cạnh - góc - cạnh:
A. S ^ = A ^
B. Q ^ = B ^
C. Q ^ = C ^
D. P ^ = C ^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}+60^0=90^0\)
=>\(\widehat{ABC}=30^0\)
Xét ΔCAD có CA=CD
nên ΔCAD cân tại C
b: Xét ΔCAM và ΔCDM có
CA=CD
AM=DM
CM chung
Do đó: ΔCAM=ΔCDM
c: Ta có: ΔCAM=ΔCDM
=>\(\widehat{ACM}=\widehat{DCM}\)
=>\(\widehat{ACP}=\widehat{DCP}\)
Xét ΔPAC và ΔPDC có
CA=CD
\(\widehat{PCA}=\widehat{PCD}\)
CP chung
Do đó: ΔPAC=ΔPDC
=>\(\widehat{PAC}=\widehat{PDC}\)
mà \(\widehat{PAC}=90^0\)
nên \(\widehat{PDC}=90^0\)
=>PD\(\perp\)BC
b) Xét ΔCBD có CF là đường phân giác ứng với cạnh BD(gt)
nên \(\dfrac{FD}{FB}=\dfrac{CD}{CB}\)(Tính chất tia phân giác của tam giác)(1)
Xét ΔCBA có CE là đường phân giác ứng với cạnh BA(gt)
nên \(\dfrac{EB}{EA}=\dfrac{CB}{CA}\)(Tính chất tia phân giác của tam giác)(2)
Ta có: ΔABC\(\sim\)ΔBDC(cmt)
nên \(\dfrac{CB}{CD}=\dfrac{CA}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{CD}{CB}=\dfrac{CB}{CA}\)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{FD}{FB}=\dfrac{EB}{EA}\)(Đpcm)
a) Xét ΔABC và ΔBDC có
\(\widehat{BCD}\) chung
\(\widehat{BAC}=\widehat{DBC}\)(gt)
Do đó: ΔABC∼ΔBDC(g-g)
a: Xét ΔABC và ΔBDC có
góc C chung
góc BAC=góc DBC
=>ΔABC đồng dạng với ΔBDC
b: FD/FB=CD/CB
EB/EA=CB/CA
mà CD/CB=CB/CA
nên FD/FB=EB/EA
ta có tam giác ABC= tam giác HIK (1)
tam giác ABC=tam giác HIK (2)
Từ (1) và (2) => tam giác ABC=tam giác ABC => đpcm
cho mik nha