chô tam giác ABC. trên các cạnh BC.CA.ABlần lượt lấy các điểm D,E,F sao cho AD,BE,CF đồng quy tại 1 điểm O ở trong tam giác ABC.cmr: AO/AD+BO/BE+CO/CF=2; OD/AD+OE/BE+DF/CF=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{OA}{AD}=\frac{S_{AOB}}{S_{ABD}}=\frac{S_{AOC}}{S_{ACD}}=\frac{S_{AOB}+S_{AOC}}{SABC}\)
Tương tự rồi cộng lại ta đc
\(\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{CF}=\frac{2\left(S_{AOB}+S_{BOC}+S_{COA}\right)}{S_{ABC}}=2\)
Bài Giải
Đặt SBOC=x2,SAOC=y2,SAOB=z2 ⇒SABC=SBOC+SAOC+SAOB=x2+y2+z2
Ta có : ADOD =SABCSBOC =AO+ODOD =1+AOOD =x2+y2+z2x2 =1+y2+z2x2
⇒AOOD =y2+z2x2 ⇒√AOOD =√y2+z2x2 =√y2+z2x
Tương tự ta có √OBOE =√x2+z2y2 =√x2+z2y ;√OCOF =√x2+y2z2 =√x2+y2z
⇒P=√x2+y2z +√y2+z2x +√x2+z2y ≥x+y√2z +y+z√2x +x+z√2y
=1√2 [(xy +yx )+(yz +zy )+(xz +zx )]≥1√2 (2+2+2)=3√2
Dấu "=" xảy ra khi x=y=z⇒SBOC=SAOC=SAOB=13 SABC
⇒ODOA =OEOB =OFOC =13 ⇒O là trọng tâm của tam giác ABC
Vậy MinP=3√2 khi O là trọng tâm của tam giác ABC
Xét ΔABC có
AD,BE,CF là trung tuyến
AD,BE,CF cắt nhau tai G
=>G là trọng tâm
=>BG=2/3BE=2BM và CG=2/3CF=2CN
=>M,N lần lượt là trung điểm của GB,GC
=>GD,CM,BN đồng quy
=>AD,CM,BN đồng quy
Câu hỏi của ✎﹏ Ƈøoȴ _ Ǥɩ®ʆ _☜♥☞ ✓ - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
a: ΔABC can tại A
mà AD là trung tuyến
nên AD là phân giác
b: Xet ΔABE và ΔACF có
AB=AC
góc BAE chung
AE=AF
=>ΔABE=ΔACF
=>góc ABE=góc ACF=1/2*góc ABC
=>BE là phân giác của góc ABC
c: Xet ΔABC có
BE,CF,AD là phân giác
=>BE,CF,AD đồng quy
vì AD=BE=CF nên AD,BE,CF là đường cao là trung trực là tung tuyến phân giác mà 3 đường cao đi qua 1 điểm , điểm này cách đều D,E,F nên tam giác DEF là tam giac đều