Cho ba đơn thức M=-5.x.y; N=11x.y2 ;P=\(\frac{7}{5}\)x2.y3
Chứng minh rằng : 3 đơn thức này k cùng giá trị dương
( giải cụ thể giúp mk nhé !) (nhanh nhất nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5}{4}xy^3z^2\cdot\left(-2x^2y^3z\right)^2\)
\(=1,25xy^3z^2\cdot4x^4y^6z^2\)
\(=5x^5y^9z^4\)
Bậc của đơn thức là: 18
\(\dfrac{5}{4}xy^3z^2.\left(-2x^2y^3z\right)^2=\dfrac{5}{4}xy^3z^2\cdot4x^4y^6z^2=5x^5y^9z^4\)
Bậc của đơn thức là: 18
\(A=\left(xy^3\right)\left(-\dfrac{3}{4}x^5x^4\right)\cdot\dfrac{8}{9}x^2y^3\)
\(=-\dfrac{2}{3}x^{12}y^6\)
Thay x = -1 và y = 1 vào biểu thức ta được :
\(A=-\dfrac{2}{3}\cdot\left(-1\right)^{12}.1^6=-\dfrac{2}{3}\)
Vậy : Tại x = -1 và y = 1 thì A có giá trị là \(\dfrac{2}{3}\)
Lời giải:
\(x^3y^2(xy^2)=x^3.x.y^2.y^2=x^4y^4\)
\(-3x^3y.\frac{1}{5}x^2y=\frac{-3}{5}x^3.x^2.y.y=\frac{-3}{5}x^5y^2\)
\(\frac{2}{5}x^3\frac{1}{2}(xy)^2=\frac{1}{5}x^3.x^2.y^2=\frac{1}{5}x^5y^2\)
\(\frac{1}{2}(xy)^2\frac{2}{5}(xy)^2=\frac{1}{5}x^2.x^2.y^2.y^2=\frac{1}{5}x^4y^4\)
Vậy các đơn thức phần a,b,c đồng dạng với nhau; đơn thức d và e đồng dạng với nhau.
\(a)\left(-2.x^2.y\right).\left(5.x.y^4\right)\)
\(=\left(-2.5\right)\left(x^2.x\right)\left(y.y^4\right)\)
\(=-10.x^3.y^5\)
Bậc : \(3+5=8\)
Hệ số : \(-10\)
\(b)\left(\frac{27}{10}.x^4.y^2\right).\left(\frac{5}{9}.x.y\right)^0\)
\(=\frac{27}{10}.x^4.y^2.1\)
\(=\frac{27}{10}.x^4.y^2\)
Bậc : \(4+2=6\)
Hệ số : \(\frac{27}{10}\)
\(c)\left(\frac{1}{3}.x^3.y\right).\left(-xy\right)^2\)
\(=\frac{1}{3}.x^3y.\left(-x\right)^2.y^2\)
\(=\frac{1}{3}.x^3.y.x^2.y^2\)
\(=\frac{1}{3}.\left(x^3.x^2\right).\left(y.y^2\right)\)
\(=\frac{1}{3}x^5.y^3\)
Bậc : \(5+3=8\)
Hệ số : \(\frac{1}{3}\)
Chúc bạn học tốt !!!