Câu 4: Cho góc nhọn xOy. Lấy M là một điểm nằm trên tia phân giác Ot của góc xOy. Kẻ MQ \(\perp\)Ox ( Q \(\in\)Ox ) ; MH \(\perp\)Oy ( H \(\in\)Oy )
a) CM: MQ = MH
b) Nối QH cắt Ot ở G. CM : GQ = GH
c) CM: QH \(\perp\)OM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kí hiệu tam giác là t/g
a) Xét t/g QOM vuông tại Q và t/g HOM vuông tại H có:
OM là cạnh chung
QOM = HOM ( vì OM là p/g của HOQ)
Do đó, t/g QOM = t/g HOM ( cạnh huyền và góc nhọn kề)
=> MQ = MH (2 cạnh tương ứng) (đpcm)
b) t/g QOM = t/g HOM (câu a)
=> QMO = HMO (2 góc tương ứng)
Xét t/g QMG và t/g HMG có:
MG là cạnh chung
QMG = HMG (cmt)
MQ = HM (câu a)
Do đó, t/g QMG = t/g HMG (c.g.c)
=> QG = HG (2 cạnh tương ứng) (đpcm)
c) t/g QMG = t/g HMG (câu b)
=> QGM = HGM (2 góc tương ứng)
Mà QGM + HGM = 180o
Nên QGM = HGM = 90o
=> QH _|_ OM (đpcm)
a) Xét tam giác vuông AMO và tam giác vuông BMO :
góc MOA = góc MOB (gt)
OM là cạnh chung
=>tam giác vuông AMO = tam giác vuông BMO (cạnh huyền + góc nhọn)
=> OA=OB ( 2 cạnh tương ứng)
b) theo a) ta có : tam giác AMO = tam giác BMO
=>góc AMO = góc BMO
=> MO là tia phân giác của góc AMB
c) gọi C là giao điểm của OM và AB
Xét tam giác OAC và tam giác OBC có:
góc AOC = góc BOC (gt)
OC là cạnh chung
OA = OB (theo a)
=>tam giác OAC = tam giác OBC
=> góc ACO = góc BCO
mà hai góc này kề bù
=> góc ACO = góc BCO = 90 độ
=> OM vuông góc với AB
Sửa đề: Chứng minh OM⊥HQ
GT | \(\widehat{xOy}< 90^0\) Ot là tia phân giác của \(\widehat{xOy}\) M∈Ot MH⊥Oy tại H MQ⊥Ox tại Q QH\(\cap\)Ot={G} |
KL | a) MQ=MH b) GQ=GH c) QH⊥OM |
a) Xét ΔOHM vuông tại H và ΔOQM vuông tại Q có
OM chung
\(\widehat{HOM}=\widehat{QOM}\)(Ot là tia phân giác của \(\widehat{xOy}\), H∈Oy, Q∈Ox, M∈Ot)
Do đó: ΔOHM=ΔOQM(cạnh huyền-góc nhọn)
⇒MH=MQ(hai cạnh tương ứng)
b) Ta có: ΔOHM=ΔOQM(cmt)
nên OH=OQ(hai cạnh tương ứng)
Xét ΔOHQ có OH=OQ(cmt)
nên ΔOHQ cân tại O(Định nghĩa tam giác cân)
Ta có: ΔOHQ cân tại O(cmt)
mà OG là đường phân giác của ứng với cạnh đáy HQ
nen OG là đường trung tuyến ứng với cạnh HQ(Định lí tam giác cân)
⇒G là trung điểm của HQ
hay GH=GQ(đpcm)
c) Ta có: OH=OQ(cmt)
nên O nằm trên đường trung trực của HQ(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: GH=GQ(cmt)
nên G nằm trên đường trung trực của HQ(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OG là đường trung trực của HQ
hay OG⊥HQ(đpcm)
câu a xét 2 tam giác bằng nhau em nhé