K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019
https://i.imgur.com/jNwPg0S.jpg

a: Xét ΔABH và ΔACK có

AB=AC
\(\widehat{ABH}=\widehat{ACK}\)

BH=CK

Do đó: ΔABH=ΔACK

Suy ra: AH=AK

hay ΔAHK cân tại A

b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có

AB=AC

\(\widehat{MAB}=\widehat{NAC}\)

Do đó: ΔAMB=ΔANC

Suy ra: AM=AN

hay ΔAMN cân tại A

a: XétΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

3 tháng 3 2021

Violympic toán 7

28 tháng 3 2021

â mây zing gút chọp

11 tháng 12 2020

Đề sai kiểm tra lại.

11 tháng 12 2020

Đề có đúng không vậy bn, mình thấy cứ sai saioho

a: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

b: Xét ΔAMN có 

AH/AM=AK/AN

nên HK//MN

hay KH//BC

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: Xét ΔABM và ΔACN có 

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó;ΔABM=ΔACN

Suy ra: \(\widehat{M}=\widehat{N}\)

Xét ΔEBM vuông tại E và ΔFCN vuông tại F có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔEBM=ΔFCN

Suy ra: \(\widehat{EBM}=\widehat{FCN}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

=>IB=IC

mà AB=AC

và HB=HC

nên A,H,I thẳng hàng

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(gt)

Do đó: ΔABM=ΔACN(c-g-c)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN(gt)

\(\widehat{HMB}=\widehat{KNC}\)(hai góc ở đáy trong ΔAMN cân tại A)

Do đó: ΔHBM=ΔKCN(cạnh huyền-góc nhọn)

Suy ra: BH=CK(hai cạnh tương ứng)

c) Ta có: ΔHBM=ΔKCN(cmt)

nên HM=KN(hai cạnh tương ứng)

Ta có: AH+HM=AM(H nằm giữa A và M)

AK+KN=AN(K nằm giữa A và N)

mà AM=AN(cmt)

và HM=KN(cmt)

nên AH=AK(đpcm)

d) Ta có: ΔHBM=ΔKCN(cmt)

nên \(\widehat{HBM}=\widehat{KCN}\)(hai góc tương ứng)

mà \(\widehat{OBC}=\widehat{HBM}\)(hai góc đối đỉnh)

và \(\widehat{OCB}=\widehat{KCN}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

14 tháng 12 2018

Xét ΔBHM vuông tại H và ΔCKN vuông tại K có:

      BM = CN (gt)

      Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

⇒ ΔBHM = ΔCKN (cạnh huyền – góc nhọn)

⇒ BH = CK (hai cạnh tương ứng)