Bài 12: Cho DABC có A = 90 0 , kẻ đường cao AH và trung tuyến AM kẻ HD⊥AB , HE ⊥ AC
biết HB = 4,5cm; HC=8cm.
a) Chứng minh góc BAH = MAC
b)Chứng minh AM ⊥ DE tại K
c) Tính độ dài AK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A có AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA=góc BAH
b: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
góc EAM+góc AED
=góc AHD+góc MCA
=góc ABC+góc MCA=90 độ
=>AM vuông góc ED
a) Nếu \(AM\perp DE\) thì ADME là hình vuông, suy ra AD = AE
Suy ra AB = AC
Áp dụng định lí Pytago vào hai tam giác vuông ABH và ACH, ta thấy AB < AC
Vậy KHÔNG thể chứng minh được :|
A H B C D E M K
A, - Xét tam giác ABC có AM là trung tuyến ứng với cạnh huyền .
=> \(AM=\frac{1}{2}BC=CM=BM\)
- Xét tam giác CMA có : \(AM=CM\)
=> Tam giác CMA cân tại M .
=> \(\widehat{MAC}=\widehat{MCA}\) ( tính chất tam giác cân )
Ta lại có : \(\widehat{MCA}+\widehat{CBA}=90^o\) và \(\widehat{HAB}+\widehat{CBA}=90^o\)
=> \(\widehat{MCA}=\widehat{HAB}\)
=> \(\widehat{MAC}=\widehat{HAC}\) ( đpcm )
b, - Áp dụng hệ thức lượng vào tam giác ACH vuông tại H , HE vuông góc với AC có :
\(AH^2=AE.AC\)
- Áp dụng hệ thức lượng vào tam giác ABH vuông tại H , HD vuông góc với AB có :
\(AH^2=AB.AD\)
=> \(AE.AC=AB.AD\left(=AH^2\right)\)
=> \(\frac{AE}{AB}=\frac{AD}{AC}\)
- Xét \(\Delta AED\) và \(\Delta ABC\) có :
\(\left\{{}\begin{matrix}\frac{AE}{AB}=\frac{AD}{AC}\left(cmt\right)\\\widehat{BAC}=90^o\end{matrix}\right.\)
=> \(\Delta AED\) ~ \(\Delta ABC\) ( c - g - c )
=> \(\widehat{AED}=\widehat{ABC}\) ( góc tương ứng )
Mà \(\widehat{ABC}+\widehat{ACB}=90^o\)
=> \(\widehat{AED}+\widehat{ACB}=90^o\)
Mà \(\widehat{MAC}=\widehat{MCA}\) ( cmt câu a )
=> \(\widehat{MAC}+\widehat{AED}=90^o\)
Ta lại có : \(\widehat{MAC}+\widehat{AED}+\widehat{EIA}=180^o\)
=> \(\widehat{EIA}=90^o\)
Vậy AM vuông góc với ED tại K .
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHElà hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
b: HE//AB
=>HN//AB
mà góc NAB=góc HBA
nên NHBA là hình thang cân
=>góc ANB=góc AHB=90 độ
=>BN vuông góc với AM
=>BN//DE
c: Xét ΔMAB có AH,BN.MK là các đường cao
nên AH,BN,MK đồng quy
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=CM
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
Suy ra: \(\widehat{MAC}=\widehat{BCA}\)
hay \(\widehat{BAH}=\widehat{MAC}\)