K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

các bạn giúp mình nhé sáng thứ tư mình nộp bài rồi cảm ơn

 

7 tháng 1 2018

Đáp án A

Vì tam giác ABC cân tại A nên AB = AC

Suy ra: hai dây AB và AC cách đều tâm.

Ta chưa thể so sánh độ dài AB và BC; AC và BC nên ta chưa thể kết luận dây nào gần tâm hơn, dây nào xa tâm hơn hay các dây cách đều tâm.

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{BC}{2}\cdot h\)

Bán kính là:

\(R=\dfrac{a\cdot b\cdot c}{4\cdot S}=\dfrac{b\cdot b\cdot BC}{4\cdot\dfrac{BC\cdot h}{2}}=\dfrac{b\cdot b\cdot BC}{2\cdot BC\cdot h}=\dfrac{b^2}{2h}\)

22 tháng 8 2021

Ta có: O là trọng tâm của ABC AO là đường trung tuyến của ABC AO là đường cao của ABC (  Trong tam giác cân đường đường trung tuyến xuất phát từ đỉnh đồng thời là đường cao và đường trung trực )

⇒ HB = HC = \(\dfrac{BC}{2}\)

⇒ OH = \(\dfrac{AH}{3}=\dfrac{h}{3}\) ( trong tam giác 3 đường trung tuyến cắt nhau tại 1 điểm gọi là trọng tâm của tam giác và cách đáy 1 khoảng = \(\dfrac{1}{3}\) chiều dài mỗi đường )

Xét tam giác vuông ABH có

\(BH^2=AB^2+AH^2=b^2+h^2\)

Xét tam giác vuông OBH có

BO = R = \(\sqrt{BH^2+OH^2}=\sqrt{b^2-h^2+\dfrac{h^2}{9}}=\dfrac{1}{3}\sqrt{9b^2-8h^2}\)

5 tháng 2 2022

Tham khảo:

Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)

Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)

Xét tỉ số:

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

5 tháng 2 2022

này giống trên mạng r 

23 tháng 11 2023

loading... a) Ta có:

OB = OC (bán kính)

⇒ O nằm trên đường trung trực của BC (1)

Do ∆ABC cân tại A (gt)

AH là đường cao (gt)

⇒ AH cũng là đường trung trực của ∆ABC

⇒ AH là đường trung trực của BC (2)

Từ (1) và (2) suy ra O ∈ AH

⇒ O ∈ AD

Vậy AD là đường kính của (O)

b) Sửa đề: Tính độ dài các đường cao AH, BK của ∆ABC

Do AH là đường trung trực của BC (cmt)

⇒ H là trung điểm của BC

⇒ CH = BC : 2

= 12 : 2

= 6 (cm)

∆AHC vuông tại H

⇒ AC² = AH² + CH² (Pytago)

⇒ AH² = AC² - CH²

= 10² - 6²

= 64

⇒ AH = 8 (cm)

⇒ sinACH = AH/AC

= 4/5

⇒ ACH ≈ 53⁰

⇒ BCK ≈ 53⁰

∆BCK vuông tại K

⇒ sinBCK = BK/BC

⇒ BK = BC.sinBCK

= 10.sin53⁰

≈ 8 (cm)