Cho tam giác ABC cân ở A. Trên cạnh BC lấy M, N sao cho BM = CN < BC/2. Kẻ ME vuông góc AB; NF vuông góc AC ( E thuộc AB; F thuộc AC ) EM cắt FN tại H. Chứng minh:
a) Tam giác ABM = tam giác CAN
b) Gọi D là trung điểm của MN. Chứng minh AD là tia phân giác của góc BAC
c) Tam giác MEB = tam giác NFC
d) EF // BC
e) A, D, H thẳng hàng
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMHB vuông tại H và ΔNKC vuông tại K có
BM=CN
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMHB=ΔNKC
b: Ta có: ΔMHB=ΔNKC
nên HB=KC
Ta có: AH+HB=AB
AK+KC=AC
mà BA=AC
và HB=KC
nên AH=AK
c: Xét ΔAHM vuông tại H và ΔAKN vuông tại K có
AH=AK
HM=KN
Do đó: ΔAHM=ΔAKN
Suy ra: AM=AN
a: Xét ΔAMB và ΔANC có
AB=AC
góc B=góc C
BM=CN
=>ΔAMB=ΔANC
b: Xét ΔAEM vuông tại E và ΔAFN vuông tại F có
AM=AN
góc EAM=góc FAN
=>ΔAEM=ΔAFN
=>AE=AF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
CM: a) Xét t/giác ABM và t/giác ACN
có: AB = AC (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
b) Ta có: BM + MD = BD
CN + ND = CD
Mà BM = CN (gt); MD = ND (gt)
=> BD = CD
Xét t/giác ABD và t/giác ACD
có: AB = AC (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
BD = CD (cmt)
=> t/giác ABD = t/giác ACD (c.g.c)
=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)
=> AD là tia p/giác của \(\widehat{BAC}\)
c) Xét t/giác MEB = t/giác NFC
có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)
BM = CN (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
=> t/giác MEB = t/giác NFC (ch - gn)
d) Ta có: AB = AE + EB
AC = AF + FA
mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)
=> AE = AF
=> t/giác AEF cân tại A
=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)
T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> EF // BC
e) Xét t/giác AEH và t/giác AFH
có: AE = AF (cmt)
\(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)
AH : chung
=> t/giác AEH = t/giác AFH (ch - cgv)
=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)
=> AH là tia p/giác của \(\widehat{A}\)
Mà AD cũng là tia p/giác của \(\widehat{A}\)
=> AH \(\equiv\) AD
=> A, D, H thẳng hàng
M: a) Xét t/giác ABM và t/giác ACN
có: AB = AC (gt)
(vì t/giác ABC cân)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
b) Ta có: BM + MD = BD
CN + ND = CD
Mà BM = CN (gt); MD = ND (gt)
=> BD = CD
Xét t/giác ABD và t/giác ACD
có: AB = AC (gt)
(vì t/giác ABC cân)
BD = CD (cmt)
=> t/giác ABD = t/giác ACD (c.g.c)
=> (2 góc t/ứng)
=> AD là tia p/giác của
c) Xét t/giác MEB = t/giác NFC
có: (gt)
BM = CN (gt)
(vì t/giác ABC cân)
=> t/giác MEB = t/giác NFC (ch - gn)
d) Ta có: AB = AE + EB
AC = AF + FA
mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)
=> AE = AF
=> t/giác AEF cân tại A
=> (1)
T/giác ABC cân tại A
=> (2)
Từ (1) và (2) =>
Mà 2 góc này ở vị trí đồng vị
=> EF // BC
e) Xét t/giác AEH và t/giác AFH
có: AE = AF (cmt)
(gt)
AH : chung
=> t/giác AEH = t/giác AFH (ch - cgv)
=> (2 góc t/ứng)
=> AH là tia p/giác của
Mà AD cũng là tia p/giác của
=> AH AD
=> A, D, H thẳng hàng
a: ΔACB cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{FCN}\)(hai góc đối đỉnh)
nên \(\widehat{ABC}=\widehat{FCN}\)
Xét ΔEBM vuông tại M và ΔFCN vuông tại N có
BM=CN
\(\widehat{EBM}=\widehat{FCN}\)
Do đó: ΔEBM=ΔFCN
=>EM=FN
b: ED//AC
=>\(\widehat{EDB}=\widehat{ACB}\)(hai góc đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EDB}=\widehat{ABC}\)
=>\(\widehat{EBD}=\widehat{EDB}\)
=>ΔEBD cân tại E
ΔEBD cân tại E
mà EM là đường cao
nên M là trung điểm của BD
=>MB=MD
c: EM\(\perp\)BC
FN\(\perp\)BC
Do đó: EM//FN
Xét ΔOME vuông tại M và ΔONF vuông tại N có
ME=NF
\(\widehat{MEO}=\widehat{NFO}\)(hai góc so le trong, EM//FN)
Do đó: ΔOME=ΔONF
=>OE=OF