K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc BAH chung

=>ΔAHB=ΔAKC

b: ΔAHB=ΔAKC

=>AH=AK

=>ΔAHK cân tại A

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

b: Xét ΔAKD vuông tại K và ΔAHD vuông tại H có

AD chung

AK=AH

Do đó: ΔAKD=ΔAHD

6 tháng 10 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Kẻ DK ⊥ BH

Ta có: BH ⊥AC(gt)

Suy ra: DK // AC (hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song)

⇒ ∠KDB = ∠C (hai góc đồng vị)

VìΔABC cân tại A nên ∠B = ∠C (tính chất tam giác cân)

Suy ra: ∠KDB = ∠B

Xét hai tam giác vuông BFD và DKB, ta có:

∠BFD = ∠DKB = 90o

BD cạnh huyền chung

∠FBD = ∠KDB (chứng minh trên)

Suy ra:ΔBFD=ΔDKB (cạnh huyền góc nhọn)

⇒ DF = BK (hai cạnh tương ứng)(1)

Nối DH. Xét ΔDEH và ΔHKD, ta có:

∠DEH = ∠DKH = 90o

DH cạnh huyền chung

∠EHD = ∠KDH (hai góc so le trong)

Suy ra:ΔDEH = ΔDKH( cạnh huyền , góc nhọn)

Suy ra: DE = HK ( hai cạnh tương ứng) (2)

Mặt khác: BH = BK + KH (3)

Từ (1), (2) và (3) suy ra: DF + DE = BH

16 tháng 2 2022

bài 1 ta có :

AC=AH+HC=6+4=10cm

Vì ΔABC cân tại A nên AB=AC=10cm

Vì ΔABH vuông tại H

⇒AB\(^2\)=AH\(^2\)+BH\(^2\)

⇒10\(^2\)=6\(^2\)+BH\(^2\)

⇒BH=8cm

Vì ΔBHC vuông tại H

⇒BC\(^2\)=BH\(^2\)+CH\(^2\)

⇒BC\(^2\)=8\(^2\)+4\(^2\)

⇒BC=4\(\sqrt{5}\)cm

16 tháng 2 2022

vẽ hình nx bn ơi hiu ❤

5 tháng 12 2017

AI GIÚP MÌNH VỚI MAI MÌNH PHẢI NỘP RỒI

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

b) Xét ΔEHB vuông tại E và ΔFHC vuông tại F có 

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEHB=ΔFHC(cạnh huyền-góc nhọn)

Suy ra: HE=HF(hai cạnh tương ứng)

Xét ΔHEF có HE=HF(cmt)

nên ΔHEF cân tại H(Định nghĩa tam giác cân)

13 tháng 3 2020

A B C H 7 cm 2 cm 2 cm

Ta có: AC = AH + HC = 7 + 2 = 9 (cm)

 Vì AB = AC => AB = 9 cm

Áp dụng định lí Pi - ta - go vào t/giác AHB vuông tại H, ta có:

AB2 = AH2 + BH2

=> BH2 = AB2 - AH2 = 92 - 72 = 32

Áp dụng định lí Pi - ta - go vào t/giác AHC vuông tại H, ta có:

 BC2 = BH2 + HC2 = 32 + 22 = 36

=> BC = 6 (cm)

21 tháng 11 2021

sai bố nó hình r ạ

 

7 tháng 5 2023

mình cần gấpp xĩu mn cứu mình vớii 

NV
7 tháng 5 2023

Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{BCA}=\widehat{CBA}\) hay \(\widehat{BCH}=\widehat{CBA}\)

Xét hai tam giác vuông BHC và CKB có:

\(\left\{{}\begin{matrix}BC\text{ chung}\\\widehat{BCH}=\widehat{CBK}\end{matrix}\right.\) \(\Rightarrow\Delta_VBHC=\Delta_VCKB\left(ch-gn\right)\)

\(\Rightarrow CH=BK\) (1)

Mà \(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\)

\(\Rightarrow AK+BK=AH+CH\) (2)

(1);(2) \(\Rightarrow AK=AH\)

\(\Rightarrow\Delta AHK\) cân tại A