Cho HCN ABCD có AB=4cm; BC=3cm. Gọi H là chân đường vuông góc kẻ từ A đến xuống BD, phân giác của góc BCD cắt BD ở E
a, CM ΔAHB ∼ ΔBCD
b, CM AH . ED=HB . EB
c, Tính SAEH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AM = 5 => BC = 10
Dung py ta go tính ra AB
Tính các góc còn lại nhờ 3 cạnh vừa tính dùng hàm cos ; sin gì đó
Bài 1
a/ AB // DI
Mà AM thuộc tia AB => AM // DI (1)
=> Tứ giác AIDM là hình thang
E là trung điểm của AD (gt) => ED = EA
Xét △EDI và △EAM có:
- Góc DEI = Góc AEM (đối đỉnh)
- ED = EA (cmt)
- Góc EDI = Góc EAM (slt)
=> △EDI = △EAM (g.c.g)
=> AM = DI (2)
Từ (1) và (2). Vậy: Tứ giác AIDM là hình bình hành (đpcm)
b/ Chứng minh tương tự câu a
c/ Hình bình hành BICN có: BN = IC = CD/2 (I là trung điểm của CD)
Hình bình hành AIDM có: MA = ID = CD/2 (I là trung điểm của CD)
=> BN = MA (3)
Mặt khác ta có: H là trung điểm của AB (gt) hay HA = HB (4)
Từ (3) và (4) suy ra: BN + HA = HB + MA
Hay: HM = HN
Hay: H là trung điểm của MN (đpcm
Bài 2: Đề sai nên không thể giải
Để giải bài toán này, chúng ta có thể sử dụng định lí Euclid và các quy tắc về góc và đường thẳng. Hãy xem xét từng câu hỏi một.
a) Để tính AC, ta có thể sử dụng định lí Pythagoras trong tam giác ABC. Với AB = 4cm và BC = 3cm, ta có AC = √(AB^2 + BC^2). Tương tự, để tính AH và BH, ta có AH = AB và BH = BC.
b) Để chứng minh rằng BH.BE = CH.AC, ta có thể sử dụng các quy tắc về tỉ lệ đồng dạng của tam giác. Bằng cách chứng minh rằng tam giác AHB và tam giác CHB đồng dạng, ta có thể suy ra công thức trên.
c) Để chứng minh góc ADH = góc ACK, ta có thể sử dụng các quy tắc về góc đồng quy và góc nội tiếp. Bằng cách chứng minh rằng góc ADH và góc ACK đồng quy với góc nội tiếp tại cùng một cung, ta có thể suy ra bằng chứng cần thiết
a,Xét \(\Delta AHB\) và \(\Delta BCD\) có :
\(\widehat{H}=\widehat{C}=90^0\)
\(\widehat{ABH}=\widehat{BDC}\left(ABCD\cdot là\cdot HCN,slt\right)\)
\(\Rightarrow\Delta AHB\sim\Delta BCD\left(g-g\right)\)
b, Ta có : \(\Delta AHB\sim\Delta BCD\left(cmt\right)\)
\(\Rightarrow\dfrac{AH}{BC}=\dfrac{HB}{DC}\)
\(\Rightarrow\dfrac{AH}{HB}=\dfrac{BC}{DC}\left(1\right)\)
Ta có : EC là phân giác \(\widehat{BCD}\)
\(\Rightarrow\dfrac{EB}{ED}=\dfrac{BC}{CD}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\dfrac{AH}{HB}=\dfrac{EB}{ED}\)
\(\Rightarrow AH.ED=HB.EB\left(ĐPCM\right)\)
c, Xét ΔABD vuông tại A, định lý Pi-ta-go ta được :
\(\Rightarrow BD=\sqrt{AD^2+AB^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
Xét \(\Delta HDA\) và \(\Delta ADB\) có :
\(\widehat{A}=\widehat{AHB}=90^0\)
\(\widehat{D}:chung\)
\(\Rightarrow\Delta HDA\sim\Delta ADB\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AD}{BD}\)
hay \(\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow AH=\dfrac{4.3}{5}=2,4\left(cm\right)\)
Xét ΔAHD vuông tại H, định lí Pi-ta-go ta được :
\(\Rightarrow DH=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)
Ta có : EC là phân giác \(\widehat{BCD}\)
\(\Rightarrow\dfrac{EB}{ED}=\dfrac{BC}{DC}\)
hay \(\dfrac{EB}{ED}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{EB}{3}=\dfrac{ED}{4}=\dfrac{EB+ED}{3+4}=\dfrac{5}{7}\)
\(\Rightarrow EB=\dfrac{5}{7}.3=\dfrac{15}{7}\left(cm\right)\)
Ta có : \(EH=BD-DH-EB=5-1,8-\dfrac{15}{7}=\dfrac{37}{35}\) (cm)
\(\Rightarrow S_{AHE}=\dfrac{2,8.\dfrac{37}{35}}{2}=1,48\left(cm^2\right)\)